February 20th-25th, 2011

SeisSol2D Workflow

Christian Pelties & Martin Käser

Department of Earth and Environmental Sciences, LMU München, Germany

The SeisSol2D Source Code

- numerical scheme:
- programming language:
- number of subroutines:
- number of files:
- number of directories:
- number of lines of source code:
- number of developers:
- pre-processing:
- post-processing:

discontinuous Galerkin finite-elements mainly FORTRAN 90 few FORTRAN 77 subroutines 304 54 3 ~ 50.000 ~ 6

mesh generation, mesh partitioning, parameterization, (e.g. material distribution, ...)

visualization of wave field (snapshots, seismograms), peak ground motion, stress distribution, seismic signal processing, ...

The SeisSol Workflow

Discretization

What numerical methods do you know or have you heard of ?

Finite Differences (FD), Finite Elements (FE), Finite Volumes (FV), etc.

What do numerical method usually require ? points or particles, regular grids, unstructured meshes, etc. What is an "unstructured mesh"? A mesh where element indices do not show a logical structure

Discretization

The discretization subdivides a continuous physical model into a set of points, elements, control volumes, cells, etc.

- numerical methods approximate functions discretely on these points or elements
- \rightarrow the finer the mesh, the more accurate the approximation
- → unstructured meshes are geometrically more flexible

Discretization of a physical model in 2D

Discretization (= the process of Mesh Generation) can still be simple in 2D

→ we might still be able to use indices in a logical structure

				-	28
	(i-1,j+1)	(i,j +1)	(i+1,j+1)		
	(i-1,j)	(i,j)	(i+1,j)		
	(i-1,j-1)	(i,j-1)	(i+1,j-1)		22

In structured meshes it is easy to know the neighbour elements to pass information

But how do you distribute indices in this mesh and identify your neighbour ???

** GAMBIT NEUTRAL FILE basin PROGRAM: Gambit VERSION: 2.3.16 Jan 2011 NUMNP NELEM NGRPS NBSETS NDFCD NDFVL 909 1686 2 3 2 2 ENDOFSECTION NODAL COORDINATES 2.3.16 1 -1.99632899778e+003 -1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.0000000000e+000 4 -1.50256963740e+003 0.0000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
basin PROGRAM: Gambit VERSION: 2.3.16 Jan 2011 NUMNP NELEM NGRPS NBSETS NDFCD NDFVL 909 1686 2 3 2 2 ENDOFSECTION NODAL COORDINATES 2.3.16 1 -1.99632899778e+003 -1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.0000000000e+000 -
PROGRAM: Gambit VERSION: 2.3.16 Jan 2011 NUMNP NELEM NGRPS NBSETS NDFCD NDFVL 909 1686 2 3 2 2 ENDOFSECTION NODAL COORDINATES 2.3.16 1 -1.99632899778e+003 -1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.000000000e+000 4 -1.50256963740e+003 0.000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 1 51 2 3 3 2 49 100
Jan 2011 NUMNP NELEM NGRPS NBSETS NDFCD NDFVL 909 1686 2 3 2 2 ENDOFSECTION NODAL COORDINATES 2.3.16 1 -1.99632899778e+003 -1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.0000000000e+000 4 -1.50256963740e+003 0.0000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
NUMNP NELEM NGRPS NBSETS NDFCD NDFVL 909 1686 2 3 2 2 ENDOFSECTION NODAL COORDINATES 2.3.16 1 1 1.99632899778e+003 1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.0000000000e+000 4 -1.50256963740e+003 0.00000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 1 51 2 3 2 49 100 -0.00000000000000000000000000000000000
909 1686 2 3 2 2 ENDOFSECTION NODAL COORDINATES 2.3.16 1 -1.99632899778e+003 -1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.000000000e+000 4 -1.50256963740e+003 0.000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100 0 100
ENDOFSECTION NODAL COORDINATES 2.3.16 $1 - 1.99632899778e + 003 - 1.93267624127e - 012$ $2 9.85389565112e + 003 1.13686837722e - 013$ $3 - 1.74944931759e + 003 0.000000000e + 000$ $4 - 1.50256963740e + 003 0.000000000e + 000$ $907 - 7.78723410147e + 003 - 3.07694414949e + 003$ $908 - 8.49870831127e + 003 - 3.55421101275e + 003$ $909 - 6.52218493125e + 003 - 3.91849972757e + 003$ ENDOFSECTION ELEMENTS/CELLS 2.3.16 $1 3 3 3 1 51$ $2 3 3 2 49 100$
NODAL COORDINATES 2.3.16 1 -1.99632899778e+003 -1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.000000000e+000 4 -1.50256963740e+003 0.000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
1 -1.99632899778e+003 -1.93267624127e-012 2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.000000000e+000 4 -1.50256963740e+003 0.000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 1 51 2 3 3 2 49 100
2 9.85389565112e+003 1.13686837722e-013 3 -1.74944931759e+003 0.0000000000e+000 4 -1.50256963740e+003 0.000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 1 51 2 3 3 2 49 100
3 -1.74944931759e+003 0.0000000000e+000 4 -1.50256963740e+003 0.0000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
4 -1.50256963740e+003 0.0000000000e+000 907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
907 -7.78723410147e+003 -3.07694414949e+003 908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
908 -8.49870831127e+003 -3.55421101275e+003 909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
909 -6.52218493125e+003 -3.91849972757e+003 ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
ENDOFSECTION ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
ELEMENTS/CELLS 2.3.16 1 3 3 3 1 51 2 3 3 2 49 100
1 3 3 3 1 51 2 3 3 2 49 100
2 3 3 2 49 100
3 3 3 2 100 50
4 3 3 50 100 98
1696 2 2 007 002 009

Header information

CONTROL IN	FO 2.3	.16	_				
	=UTRA		E				
basin		_					
PROGRAM:		Gan	nbit '	VERSIO	N: 2.	3.16	
Jan 2011							
NUMNP	NELE	MN	IGRPS	S NBS	ETS	NDFCD	NDFVL
909 16	686	2	3	2	2		
ENDOFSECT	ION						
NODAL CO	ORDIN	ATES	5 2.3.16	6			
1 -1.996	328997	778e+	003 -1	.932676	24127	7e-012	
2 9.853	895651	12e+	003 1.	136868	37722	2e-013	
3 -1.749	449317	⁷ 59e+	003 0.	.000000	00000)e+000	
4 -1.502	569637	740e+	003 0.	.000000	00000)e+000	
907 -7.787	234101	147e+	003 -3	.076944	14949	9e+003	
908 -8.498	708311	127e+	003 -3	.554211	01275	5e+003	
909 -6.522	184931	125e+	003 -3	.918499	72757	7e+003	
ENDOFSECT	ION						
ELEMENT	S/CEL	LS 2.	3.16				
133	3	1	51				
233	2	49	100				
333	2 1	00	50				
433	50	100	98				
1685 3 3	903	906	900				
	907	903	908				
LENDOFSECT	ION						

Nodal coordinates

CONTROL IN	IFO 2.3.	16					
** GAMBIT NI	EUTRA	l FIL	.E				
basin							
PROGRAM:		Gai	mbit V	ERSIO	N: 2.	3.16	
Jan 2011							
NUMNP	NELEN	Λ	NGRPS	NBSE	TS	NDFCD	NDFVL
909 16	686	2	3	2	2		
ENDOFSECT	ION						
NODAL CO	ORDIN	ATE	S 2.3.16				
1 -1.996	328997	78e-	+003 -1.	9326762	24127	7e-012	
2 9.853	895651	12e-	⊦003 1. ⁻	1368683	37722	2e-013	
3 -1.749	449317	59e-	+003 0.0	000000)0000)e+000	
4 -1.502	2569637	40e-	+003 0.0	000000)0000)e+000	
907 -7.787	234101	47e-	+003 -3.	0769441	4949	9e+003	
908 -8.498	8708311	27e-	+003 -3.	5542110)127	5e+003	
909 -6.522	184931	25e-	+003 -3.	9184997	275	7e+003	
ENDOFSECT			-				
ELEMEN	IS/CEL	LS 2	.3.16				
1 3 3	3	1	51				
233	2 4	19	100				
333	2 1	00	50				
433	50 1	100	98				
	000	000	000				
1685 3 3	903	906	900				
1686 3 3	907	903	908				
LEINDOFSECT							

Elements = connectivity

CONTROL INFO 2.3.16
** GAMBIT NEUTRAL FILE
basin
PROGRAM: Gambit VERSION: 2.3.16
Jan 2011
NUMNP NELEM NGRPS NBSETS NDFCD NDFV
909 1686 2 3 2 2
ENDOFSECTION
NODAL COORDINATES 2.3.16
1 -1.99632899778e+003 -1.93267624127e-012
2 9.85389565112e+003 1.13686837722e-013
3 -1.74944931759e+003 0.0000000000e+000
4 -1.50256963740e+003 0.0000000000e+000
907 -7.78723410147e+003 -3.07694414949e+003
908 -8.498/083112/0+003 -3.554211012/50+003
909-6.522184931250+003-3.918499727570+003
1686 3 3 907 903 908

Elements = connectivity

Element identifier (not important)

ELEMENT GROUP 2.3.16										
GROUP:		I ELEN	ENTS:	3	00 MA	FERIAL	_:	4 NFL	AGS:	
		basin								
0										
1	2	3 4	5	6	7	8 (9 10			
11	12	13	14 1	5 1	6 17	7 18	19	20		
281	282	283	284	285	286	287	288	289	290	
291	292	293	294	295	296	297	298	299	300	
ENDOFS	SECTIC)N								
ELEI	MENT	GROUI	P 2.3.1	6						
GROUP:	2	2 ELEM	IENTS:	1:	386 MA	TERIA	L:	4 NF	LAGS:	
		bedrocl	〈							
0										
301	302	303	304	305	306	307	308	309	310	
311	312	313	314	315	316	317	318	319	320	
1671	1672	1673	1674	167	75 167	76 16	77 16	678 ⁻	1679	1680
1681	1682	1683	1684	168	85 168	36				
	SECTIC	N								

Elements in basin

ELEMEN GROUP:	IT GR	OUP 2. 1 ELEN basin	3.16 //ENTS:	3	00 MA	ATERIA	NL:	4 NFL	_AGS:	1
0										
1	2	3 4	5	6	7	8	9 10)		
11	12	13	14 1	5 1	6 1	7 1	8 19	20		
281	282	283	284	285	286	287	288	289	290	
291	292	293	294	295	296	297	298	299	300	
ENDOFS	ECTI	ON								
	MENT	GROU	P 2.3.16	3						
GROUP:		2 ELEN	/ENTS:	13	386 M	ATERI	AL:	4 NF	LAGS:	
		bedroc	ĸ							
0										
301	302	303	304	305	306	307	308	309	310	
311	312	313	314	315	316	317	318	319	320	
1671	1672	1673	1674	167	5 16	676 1	677 1	678	1679	1680
1681	1682	1683	1684	168	5 16	686				
ENDOFS	BECTH	ON -								

Elements in bedrock

Boundary conditions

Identifier of boundary element type:101 = free surfaceboundary102 = non-conformingboundary103 = dynamic ruptureboundary104 = inflowboundary105 = absorbingboundary106 = periodicboundary

Index of boundary element

Index of local side of the boundary element that carries the boundary condition

Mesh Partitioning with METIS:

You can get the mesh partitioner METIS as free-ware from: http://glaros.dtc.umn.edu/gkhome/views/metis

After installation you have to extract the connectivity matrix from the mesh file (e.g. **basin.neu**) and put a simple header to identify the number of element and the element type:

- 1 = triangle
- 4 = quadrilateral

and save it as a METIS file, e.g. basin.met

First transform the mesh to a graph via the command

mesh2dual basin.met

Then partition the graph into the desired number **np** of processors (= subdomains) via the command

pmetis basin.met.dgraph np

and get the resulting file

basin.met.epart.np

The Parameter File .par

The parameter file (typically with suffix .par) contains 12 blocks:

- SeisSol Version
- Equations
- Initial Condition
- Boundaries
- Source Terms
- Sponge Layer
- Mesh
- Discretization
- Output
- Abort Criteria
- Analysis of Data
- Debugging Modus

All simulation parameters are defined in the .par file.

The .par file will be discussed in detail during the excercises!

How to get and setup the seissol2d code:

Execute the following command (for SeisSol group members):

svn checkout https://user@svn.geophysik.uni-muenchen.de/svn/seissol2d/trunk

This will create a folder **trunk** in the directory, where you executed the command. Within the folder **trunk** you will find the following subdirectories:

./common ./main ./Maple ./Matlab ./src

Create a new directory ./examples for your own applications by

mkdir examples

How to compile the seissol2d code (1):

Make sure you have the **Intel compiler** available: Follow the description on our **intranet** web-pages

intranet \rightarrow IT Service/HowTo's \rightarrow Applications \rightarrow Intel Software

for I386 and AMD 64 machines.

Linux/Windows	BASH Users
Mailing Lists	Please add the lines for the software product you need to your ~/.bash_profile:
Subversion	Intel C/C++ and FORTRAN Compiler and Debugger
Tools	■ on <mark>I386</mark> machines
Website	
Telephone Manuals	# Intel C/C++ and FORTRAN Compiler and Debugger
Printing	if [\$(uname -m) = "i686" -a -e /opt/intel/Compiler/11/bin/iccvars.s
Miscellaneous	source /opt/intel/Compiler/11/bin/iccvars.sh ia32
Contact All	fi
Guests	
Info for Newbies	
In Case Of Emergency	• on AMD64 machines
	<pre># Intel C/C++ and FORTRAN Compiler and Debugger if [\$(uname -m) = "x86_64" -a -e /opt/intel/Compiler/11/bin/iccvars source /opt/intel/Compiler/11/bin/iccvars.sh intel64 fi • the C/C++ and FORTRAN Compiler and Debugger documentation is installed in /opt/intel /Compiler/11/Documentation/</pre>

How to compile the seissol2d code (2):

Make sure you have the Intel MPI available: Follow the description on our intranet web-pages

intranet \rightarrow IT Service/HowTo's \rightarrow Applications \rightarrow Intel Software

for I386 and AMD 64 machines.

h	• on I386 machines
	<pre># Intel MPI if [\$(uname -m) = "i686" -a -e /opt/intel/impi/3.2/bin/mpivars.sh source /opt/intel/impi/3.2/bin/mpivars.sh fi</pre>
	on AMD64 machines
	# Intel MPI
	<pre>if [\$(uname -m) = "x86_64" -a -e /opt/intel/impi/3.2/bin64/mpivars source /opt/intel/impi/3.2/bin64/mpivars.sh fi</pre>
	the MPL documentation is installed in /opt/intel/impi/3 2/doc/

How to compile the seissol2d code (3):

If your setup is correct, go to the ./main directory and type:

make clean

make

After a successful compilation ending with

• • •

= installed ./../bin/seissol2dxx

additional directories should have been created:

./lib ./bin

where ./bin contains the executable

seissol2dxx

How to run a SeisSol simulation:

To run a simulation go to your working directory, e.g.

./examples/basin

and start the simulation with e.g.

./seissol2dxx basin.par

or on a cluster system (i.e. TETHYS)

mpirun.openmpi -np 32 -nolocal -machinefile TETHYS.machines.32.G1 seissol2dxx basin.par

that uses the executable seissol2dxx on 32 cores defined in TETHYS.machines.32.G1 and the simulation parameters defined in basin.par

Output files generated by a SeisSol simulation:

Each core writes its	number of core
log-file: progress-file:	IRREGULARITIES.0000.log StdOut0000.txt number of receiver
seismograms:	output-pickpoint-00001-0000.dat (= time series of seismic ground motion at one postion in space)
snapshots:	output-00000000.0000.tri.dat (= spatial slice of seismic ground motion on mesh vertices at one position in time)
snapshots fine-output:	output.GF.000000000.0000.dat (= spatial slice of seismic ground motion as polynomial coefficients in each element at one position in time)
	→ the snapshot fine-output has to be post-processed for visualization on an additional, regular, fine visualization grid
	the post-processing is done with dgvisuxx

How to visualize SeisSol simulation results:

The main results from a SeisSol simulation are:

- seismograms (= time series of seismic ground motion at one postion in space)
 - (= spatial slice of seismic ground motion at one position in time)

- snapshots

- fine snapshots (= spatial slice of seismic ground motion at one position in time on a fine visualization mesh)

All output is generated in **tecplot**-format, remotely available through the LRZ.

Alternatively, **Gnuplot**, **Python** or **matlab**-scripts can be used for visualization.

Provided matlab-scripts in the repository:

for seismograms:	Reformat_seissol_seismograms.m Plot_seissol_seismograms.m	(→ data reduction!)
for snapshots:	Plot_seissol_snapshot.m	
for fine snapshots:	Plot_seissol_snapshot_fine.m	(→ after post-processing with dgvisuxx)

Post-Processing of Galerkin Fine (GF) output:

The Galerkin Fine (GF) output contains the **polynomial coefficients** of the approximation for every element.

Therefore, the **resolution can be much higher** through the element-internal structure of the wave field than for the normal snapshot output.

dgvisuxx is a tool to evaluate the polynomial approximation on a user-defined regular visualization grid

The required input file (e.g. visu_basin.in) can have the following form:

1 -120007000. 0. 30000. 0. 0. 0. 7000. 0. 400	 ! Cartesian mode (yes=1) ! Coordinates of origin ! Vector of 1st Cartesian axis ! Vector of 2nd Cartesian axis ! Number of samples on 1st axis 	
100	! Number of samples on 2nd axis	
1	! MPI input data (no=0, yes=1)	
32	! Number of CPUs	
output.GF.00000000	! MPI root filename	
GF_basin.dat	! Output file name	
1	! Output format (Tecplot=1)	
sigma_xx	! Variable name 1	
sigma_yy	! Variable name 2	-
sigma_xy	! Variable name 3	5
u	! Variable name 4	
V	! Variable name 5	
0	! End of file indicator	

Create a file called DGPATH in your working directory, containing the absolute path to your Maple directory, e.g.

/home/messuser/seissol2d/Maple/

Then execute the post-processing via: ./dgvisuxx < visu_basin.in

Visualize data:

To visualize the seismograms (*-pickpoint-00001.dat) you can either use Python or simply gnuplot.

Start gnuplot with

gnuplot

The command to plot the second column against the time is

plot '*****-pickpoint-00001.dat' u 1:2 w l

Visualize data:

To visualize the snapshots which include mesh information use:

./visz_snap.py

as follows:

./visz_snap.py output-00000000.tri.dat

You produce a readable fine-output that respects the high-order polynomials with:

./dgvisuxx < visu.in

The result

GF_output_t0.dat

can be visualized with

./visz_fine.py GF_output_t0.dat

What will I find in my seissol2d folder?

/bin

- Contains the executables

/examples

-Contains the example models and setups

- your working directory

/Maple

- Contains the basis functions

/seissol2d_demo

- Source code

/seissol_papers

- Fundamental publications

/visualization

- Contains the visualization tools

seissol_course.pdf

seissol2d_workflow.pdf

seissol2d_docu.pdf

Seissol_practicals.pdf