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General Overview – Possibilities

Part I



• use of tetrahedral and hexahedral meshes to approximate complex 3D model       

geometries

Characteristics of the SeisSol simulation software:
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Salt dome model - SEAM Consortium



• use of tetrahedral and hexahedral meshes to approximate complex 3D model       

geometries

Characteristics of the SeisSol simulation software:

Sonic logging for oil industry – model includes steel casing!



• use of tetrahedral and hexahedral meshes to approximate complex 3D model       

geometries

Characteristics of the SeisSol simulation software:



• use of tetrahedral and hexahedral meshes to approximate complex 3D model       

geometries

Characteristics of the SeisSol simulation software:

Dynamic rupture simulation of the Landers Earthquake
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• use of tetrahedral and hexahedral meshes to approximate complex 3D model       

geometries

• use of acoustic, elastic, viscoelastic, poroelastic, and anisotropic material to 

approximate realistic geological subsurface properties

• use of arbitrarily high approximation order in time and space to produce reliable and 

sufficiently accurate synthetic seismograms or other seismological data set

• use of explicit local time step algorithm, such that each element is running its own 

optimal time step length to reduce computation time

Characteristics of the SeisSol simulation software:



Characteristics of the SeisSol simulation software:

It is based on a numerical approach using the 

Discontinuous Galerkin Finite Element

Method which exhibits the desirable 

properties of:

• high-order orthogonal polynomial basis 

functions on tetrahedrons and hexahedrons

• locality of the computations, as only directly 

neighboring elements are required to 

exchange data, which leads to small 

communication times for parallel calculations

• concept of numerical fluxes from the Finite 

Volume framework that allows us to consider 

different physical properties occuring in wave 

propagation problems



Elastic wave equation in 2D

System of 5 equations for 5 unknowns



Seismic wave equations in 3D 

System of 9 equations for 9 unknowns



Discretization

What numerical methods do you know or have you heard of ?

Finite Differences (FD), Finite Elements (FE), Finite Volumes (FV), etc.

What do numerical method usually require ?

points or particles, regular grids,
unstructured meshes, etc.

What is an “unstructured mesh” ?

A mesh where element indices
do not show a logical structure



Discretization

The discretization subdivides a continuous physical model into a set

of points, elements, control volumes, cells, etc.

� numerical methods approximate functions discretely on these points 

or elements

� the finer the mesh, the more accurate the approximation

� unstructured meshes are geometrically more flexible  



Discretization of a physical model in 1D

Discretization ( = the process of Mesh Generation) is very simple in 1D

���� a line just has to be subdivided into a set of intervals

x

regular grid with structured index logic

1 2 3 4 5 6 7

… i -1 i i +1       …

irregularly spaced mesh with unstructured index logic

x
2 61 117 4 85103 9…

irregularly spaced grid, but still structured index logic

x
… i -1 i i +1       …

1 2 3 4 5 9 10 11… …



The approximation can be done by different basis functions, however, in many

cases polynomial functions are used for the approximation. 

Polynomial Approximation of Functions

The highest exponent occurring 
defines the degree of the polynomial !

monomial basis, usually is never used

the most simple case is a piecewise constant approximation, i.e. the chosen 

polynomial is a polynomial of degree 0. 

In the above case the approximation criterion is

that the constant is equal to the function value
at the center of the interval:



Improved Numerical Approximation by Higher Order



zoomed

Improved Numerical Approximation by Higher Order



� mesh refinement and increase of the approximation order improve the approximation

� which approach is more efficient is often a difficult question to answer and has 

to be studied in detail, however, in DG coarse meshes and high oders pay off!

� However, first-order methods usually are very diffusive and of no use
for practical problems, where some reasonable accuracy is required !!!

Improved Numerical Approximation by Higher Order



Inside each interval I (=element) of our discretization, we approximate the solution q(x,t)

numerically by using the reference interval I
R 

and a linear combination of 

• time-independent polynomial functions (in 1D: Legendre Polynomials Pn) 

as a set of basis functions up to maximum degree N. 

• time-dependent degrees of freedom (DOF)

such that we get

Polynomial Approximation in the DG framework

“Einstein summation 
convention”

Note that the physical space in I is denoted by x whereas the 

reference space in the unit interval  I
R

is denoted by     .



This approximation is one of the key ingredients for the extension of the 

Discontinuous Galerkin Finite Element method to high-order accuracy.

The mapping into a reference interval (reference element), where the basis 

functions are defined leads to an elegant treatment of complicated discretizations

of physical models with deformed or variable-size element.
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Polynomial Approximation in the DG framework



This approximation is one of the key ingredients for the extension of the 

Discontinuous Galerkin Finite Element method to high-order accuracy.

2D 3D

The mapping into a reference interval (reference element), where the basis 

functions are defined leads to an elegant treatment of complicated discretizations

of physical models with deformed or variable-size element.

Polynomial Approximation in the DG framework



Approximation Order and Numerical Convergence

To get correct high-order approximations is not easy and implementation has

to be carried out with caution.

� to check if the approximation method works correctly and reaches the 

expected order of accuracy, one has to compute the errors of a numerical 

solution compared to an exact solution on a series of refined meshes

Determining the errors E1 and E2 for two different mesh spacings h1 and h2 gives

�

The approximation error E can be written as a function of the mesh spacing h and

the order O as: 

and the order O can 
be computed as

� convergence test



Convergence Test and Error Norms

The functions of the errors E1 and E2 with respect to the mesh spacings
h1 and h2 have the form of a straight line on a logarithmic scale.

The order O can then be interpreted 

as the slope of the error lines.

The discrete error at all points i between the 

exact qe and the numerical qn solution can be 

measured in different norms, e.g.

often the p=2, or the maximum norm are used 

Question:
What is O representing ?



Accuracy depence on:

• spatial sampling (mesh spacing)

• distance of propagated wavelength

• approximation order

high order pays off !

80 λ

20 λ

120 λ

40 λ

E = hp + C

Approximation Order and Numerical Convergence

2 Elements per wavelength at O5



Time step length

Every tetrahedron element (m) 

has its own time step

with lmin : radius of insphere

amax : highest wave velocity

N : polynomial degree

The condition in (a) is fulfilled and is violated in (b).



Time step length

Every tetrahedron element (m) 

has its own time step

with lmin : radius of insphere

amax : highest wave velocity

N : polynomial degree

ADER-DG enables the use of local time stepping!

Time step criteria is implemented. However, for stability reasons a smaller time 

step has to be chosen: CFL-number

Rule of thumb: O3 CFL-number = 0.5

Empirical: for higher-order smaller numbers, but as high as possible!



Example: Stiff inclusion modified after

LeVeque 2002)

Number of element-updates:

- 72 *109 for order 6 with global time step

- 95 *107 for order 6 with local time step

Speed-up:  ~100 !



Hierarchy of Matrices – high order is not for free

Matrices in the Discontinuous Galerkin scheme depend on the approximation

order O, i.e. on the degree N of the polynomials.

e.g. matrix of degrees of freedom: 

e.g. stiffness and flux matrices

O = 4, i.e. N = 3

e.g. mass matrix

O = 3, i.e. N = 2

O = 2, i.e. N = 1

O = 1, i.e. N = 0



• Adaptation of the approximation order, e.g. ranging from 

O4 to O7, according to the insphere radius, which is 

responsible for time step criterion

� 2 x larger time step with respect to pure O7

� only 28% of number of degrees of freedom with

respect to pure O7: 400 000 instead of 1.4 million

� 6 x faster than pure O7 simulation, for a similar  

accuracy of the results

O4 O5 O6 O7

Pττττ-Adaptivität



Parallel computing

How many computers do I have to use?

• Depends on order of accuracy and system architecture (memory, CPU 

frequency, I/O speed, inter-nodal communication speed)

• and has to be figured out individually (at least 2 simulations to recognize 

a trend – better or worse efficiency?).

Experience:

• standard cluster: ca. 5,000-10,000 elements per core with O3

to less than 1,000 elements per core with O7

• IBM BlueGene: a quarter of these numbers

More is better? Not always! More nodes increase the 

communication time and, thus, decrease the 

time for real computations.
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Problem:

Local time stepping
+

Realistic model

� computing time varies

strongly in space and time



���� inhomogeneous
load balancing

caused by asynchronous

element updates

� Group elements

(options in matlab scripts

available)



The Derivation of the DG Scheme

Part II



Content of the lecture

• elastic wave equation

• spatial discretization: grids and meshes

• numerical approximation with polynomials

• Riemann problem & numerical flux

• ADER time integration



Background to Numerical Scheme:

SeisSol is based on the Discontinuous Galerkin (DG) Finite Element Method.

It uses a particular Time Integration approach (ADER) developed by Prof. Toro and V.Titarev. 



Elastic wave equation in 2D

System of 5 equations for 5 unknowns



Simplification of the elastic wave equation to 1D

System of 2 equations for 2 unknowns

We will start with the simple model equation of scalar linear advection in 1-D:



Inside each interval I (=element) of our discretization, we approximate the solution q(x,t)

numerically by using the reference interval I
R 

and a linear combination of 

• time-independent polynomial functions (in 1D: Legendre Polynomials Pn) 

as a set of basis functions up to maximum degree N. 

• time-dependent degrees of freedom (DOF)

such that we get

Polynomial Approximation in the DG framework

“Einstein summation 
convention”

Note that the physical space in I is denoted by x whereas the 

reference space in the unit interval  I
R

is denoted by     .



� defined on the interval -1 ≤ x ≤ 1

Legendre Polynomials – basis functions

� they are normalized

� Legendre Polynomials are 

symmetric or antisymmetric:

n

Some important properties of the Legendre Polynomials are:

� they form an orthogonal basis



The Derivation of the DG Scheme

We will start with the simple model equation of scalar linear advection in 1-D:

The DG-method solves the weak formulation of the problem, given by

This is similar to the integral form of hyperbolic conservations laws introduced for

the finite volume schemes, where smooth function φ = 1. 



An intelligent choice of the smooth functions φ are the Legendre Polynomials.

If we integrate over one time step ∆t = tn+1 – tn and one element (=interval I), we get

Here the index k specifies which basis function φk, i.e. Legendre Polynomials of degree k,

we are using. The range of k, i.e. how many basis functions we are using, depends on the 

order of approximation O and therefore on the polynomial degree N.

The approximation order O depends on the degree N of the Legendre Polynomials 

used to approximate the function q(x,t) like O = N+1. 

Question 1: How does the approximation order O depend on the polynomial degree N?

The Derivation of the DG Scheme



Starting from the previous integral equation

and integrating the second term by parts leads to 

Question:
How does integration 
by parts work ?

x
l

x
r

I

flux term stiffness term or

volume integral

update term

In the following we will go through the approximation and detailed form 
of these three terms one by one!

The Derivation of the DG Scheme



The Update Term

First we have to map the interval I from the physical space into the 

reference interval I
R

= [0,1].

This transformation includes the multiplication with the size |I| of the interval I.

Question:
Why can we separate 
the integrals this way?

Now, use the polynomial approximation of q on the reference interval. 

as the basis functions are time-independent and the DOF space-independent ! 

This finally lead to the update term



The orthogonality of the basis

functions φ leads to the following property of the space integral over the 

product of Legendre Polynomials on the reference interval [0,1]:

The mass matrix for a scheme of order 3 is

as the polynomial degree N = 2 � k,l = 0,1,2

Question: How does the mass matrix for a scheme of order 3 look like?

Therefore, we can construct the mass matrix M
kl

for k,l = 0,…,N 

that has only entries on its diagonal

The Update Term



The Flux Term

Mapping the interval I

from the physical space
into the reference interval 
I

R
= [0,1] leads to x

r
= 1 and x

l
= 0.

x
l x

r

I

The approximation of q on the reference interval                leads to



The Flux Term

Again, only the DOF are time-dependent and remain under the time integral.

For completeness we construct the flux matrices FR
kl

and FL
kl

for k,l = 0,…,N 

even if the entries are simple. 

x
l

x
r

I

Note: This simple form of the flux matrices will change 
for multi-dimensional problems, as the boundaries 
of elements become edges in 2-D or faces in 3-D 
where the integrals over products of basis 
functions have to be computed.  

I
I



General Solution using Characteristics

The characteristics or characteristic curves of the scalar linear advection equation 

are curves in the x-t plane along which x – at is constant. 

� values of q simply advect with constant speed a = dx / dt

x

t

x0

characteristic curves x = x(t)

with slope 1/a

� for a = const. they are all parallel !

� a particular characteristic passing through x0 is given by    x(t) = x0 + at

� the general solution is

The initial condition translates with speed a, but the shape remains unchanged !



The Riemann Problem – a special initial condition

A hyperbolic equation together with a special initial condition, i.e. piecewise constant

values with a single discontinuity at one point, is called the Riemann Problem.

PDE:

IC:

x = 0 
x

qL

qR

q(x)

Using characteristics the initial discontinuity propagates with speed a
by a distance x = at during time t.

x = 0 
x

t

characteristic curve

x – at = 0

x – at > 0 x – at < 0

qL qR

� this characteristic curve is the only one across which the solution changes !

� this characteristic separates the left and right states
and the solution of the Riemann Problem is 



The Riemann Problem

� the Riemann Problem is the combination of 

a PDE and a piecewise constant initial condition

� solving the Riemann Problem gives information
which is used to compute numerical fluxes and update solutions in time

� the solution of a Riemann Problem is typically a similarity solution, i.e. a function

of x/t, and consists of waves that propagate away from the original discontinuity
with constant wave speeds

� the solution of a Riemann Problem is easily solved in terms of eigenvalues and

eigenvectors of the system matrix A

x = 0 
x

qL

qR

q(x)

To simulate seismic wave propagation with the DG method, we need

���� numerical fluxes between neighboring elements 
���� solutions of the Riemann Problem stated by the seismic wave equation



The main goal is the development of numerical methods that are 

• as accurate as possible while computationally

• as   cheap   as possible ! 

Linear Advection - analytical vs. numerical solutions

the scalar linear advection problem with constant propagation speed is simple

� an analytical solution q can be computed that is exact

for more difficult problems it is much harder or impossible to find such solutions
���� a numerical solution qn has to be computed that is only approximate 

q0(x) = q(x,0) qn(x,6) ≈ q(x,6)

analytical

numerical



The Stiffness Term

as again, only the DOF are time-dependent and remain under the time integral,

while the space integral over the product of basis functions with their 
space-derivatives can be separated.

Mapping the interval I

from the physical space
into the reference interval 
I

R
= [0,1] and considering the resulting change in derivatives             gives 

The approximation of q on the reference interval                leads to

Question: Why can we separate the integrals here?



Now, the integral over the

product of basis functions 
with their space derivatives

has to be computed explicitly. 

� The space integral can be pre-calculated analytically or computed numerically 

using a Gaussian integration rule that is exact for the required polynomial degree 

obtained through the product in the integrand.  

Question: How would you solve this space integral?

The Stiffness Term



The stiffness matrix K
kl

for k,l = 0,…,N is given as

and is very sparse, i.e. only a few entries are non-zero. This property also remains
for the multi-dimensional case. 

Question: How do the entries of the first row for k=0 look like?

The stiffness matrix for a scheme of order 3 is

as the polynomial degree N = 2 � k,l = 0,1,2

The Stiffness Term



The DG-Scheme

Putting together all three terms again leads to the following formulation

flux terms stiffness term or
volume integral

update term

� One choice is using a Runge-Kutta scheme for accurate time integration.

� Our choice is following the ADER-approach using high-order derivatives  

Each term includes a time integral over one time step ∆∆∆∆t = tn+1 - tn.

In order to obtain a numerical scheme that provides the same accuracy 

in time as in space we need to approximate these time integrals in the flux and

stiffness terms with the same accuracy as the chosen space accuracy.



The ADER Time Integration

The basis of high-order time integration is the Taylor Series Expansion in time!

The ADER time integration method follows the technique of Lax-Wendroff, where the

time derivative is replaced by the space derivative, by using the governing PDE, i.e.

This can be extended to a recursive formula for higher-order derivatives.

This approach is often called the Cauchy-Kowalewski Procedure !

First 

ingredient

Second 

ingredient



So we can determine the required time integrals with the spatial order of accuracy !

If we now formulate the Taylor series expansion for the degrees of freedom we get  

and finally, for the time integration of the degrees of freedom we have 

with

The Cauchy-Kowalewski Procedure



The Fully Discrete ADER-DG Scheme

We now have to find an update formula of our degrees of freedom from time level

tn to tn+1 using the formulation

Thus we carry out the integration of the update term leading to

If we solve the equation now for the degrees of freedom at time level tn+1 we get 

the fully discrete update formula of the ADER-DG scheme for element i

The order is determined by the number of degrees of freedom (the range of k,l)!



The system of the isotropic, elastic wave

equation can be written as

with the vector Q of unknowns, the

Jacobian matrices A and B and 

the source term S

Matrix-vector formulation of the system in 2D



The Cauchy-Kowalewski Procedure

with

If we apply this methodology on our linear advection equation in the reference space, 

we get  

In weak formulation and expressing q by                                      leads to



Now we have everything to compute the N+1 degrees of freedom given as

Calculation of the Degrees of feedom (DOF)

Using the orthogonality of the basis functions φφφφ gives

Applying Gauss-Legendre numerical integration over discrete integration points ξξξξi

finally leads to

for l = 0,…,N


