February 20t-25t, 2011

SeisSol Course

From elastic wave equations to the ADER-DG method
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General Overview — Possibilities
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isSol simulation software
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Characteristics of the SeisSol simulation software

AN

> INSEDSENS
JAY) NI
S _Lwﬂ»ﬂﬁﬂﬂhbhv‘ VYA
s e e
SN AVAN L2 He2S mﬂ A«Wb 2>

av, “'LV
Ay ) GOSN
S S SR,

7 2 o)

.w 40 «é:? XD Bt R 3
150, ROPRARIERERTARER]. e 0

= R PRI ASEISIRER R

A N AT X A A VA Vs

= i SR SOENRDEE

% SRR KRNN &Y

: I

o AT

£

o

o

O

)

ALY N N N WV I 0 Y AW Y AV AT BAAE AR RA I AT L ALATR AN LR LA AL AT Rl

» use of tetrahedral and hexahedral meshes to approxima

geometries

Sonic logging for oil industry — model includes steel casing!



Characteristics of the SeisSol simulation software:

« use of tetrahedral and hexahedral meshes to approximate complex 3D model
geometries

shapshot of seismo-acoustic wave coupling z




Characteristics of the SeisSol simulation software:

« use of tetrahedral and hexahedral meshes to approximate complex 3D model
geometries
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Characteristics of the SeisSol simulation software:

« use of tetrahedral and hexahedral meshes to approximate complex 3D model
geometries

« use of acoustic, elastic, viscoelastic, poroelastic, and anisotropic material to
approximate realistic geological subsurface properties

Anisotropic Isotropic




Characteristics of the SeisSol simulation software:

« use of tetrahedral and hexahedral meshes to approximate complex 3D model
geometries

« use of acoustic, elastic, viscoelastic, poroelastic, and anisotropic material to
approximate realistic geological subsurface properties

« use of arbitrarily high approximation order in time and space to produce reliable and
sufficiently accurate synthetic seismograms or other seismological data set
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Characteristics of the SeisSol simulation software:

« use of tetrahedral and hexahedral meshes to approximate complex 3D model

geometries

« use of acoustic, elastic, viscoelastic, poroelastic, and anisotropic material to
approximate realistic geological subsurface properties

« use of arbitrarily high approximation order in time and space to produce reliable and

sufficiently accurate synthetic seismograms or other seismological data set

» use of explicit local time step algorithm, such that each element is running its own
optimal time step length to reduce computation time
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Characteristics of the SeisSol simulation software:

It is based on a numerical approach using the 40000 - ™ T— S S r—
Discontinuous Galerkin Finite Element i ) ————
Method which exhibits the desirable 20000_ .............. ............. ............... .............. e =
properties of: b f

. . . 3 10000_ .............. .............. .............. .............. _
« high-order orthogonal polynomial basis = i § 5 | | §
functions on tetrahedrons and hexahedrons g TR S W . . S
- locality of the computations, as only directly 5 Q
heighboring elements are required to s00f s i — X \
exchange data, which leads to small N L W W S ———

communication times for parallel calculations

256 512 1024 2048 4096 8192
» concept of numerical fluxes from the Finite number of cores
Volume framework that allows us to consider
different physical properties occuring in wave
propagation problems -




Elastic wave equation in 2D

System of 5 equations for 5 unknowns Orx s Oyy - Ozy U, U

%aﬂ — (A + Q,u.)%u — )\%’U = 0,

%U’yy — )\%u —(A+ 2‘“')%?’! = 0,
%gw — ,u.(%v + g—yu) = 0,
p%u — %JH — %UIQ = fz,
PoE = 502y ~ 90w = [y,




Seismic wave equations in 3D

System of 9 equations for 9 unknowns Ty 7 . Oyy . 0zz , Oqy . Oqz , Oyz U,V W

Dopr — (AN +2p) 2u — )\E%’U —ALw = 0,
%g’yu )\ - T U (A+ 2“)_1 - )\%w = 0,
50 = Agpu = Agrv — (A4 2p)Fow = 0,
%Ul‘y - ,“'(Ei-t” + C%U') = 0,
%Urz — ,‘"(%u + 8%:“) = 0,
%Jyz — ,u.(gzv + C%U) = 0,

pmu 88 Orr — a%a;ry Eiﬁlz = [z,

Pasl — Eio-ly gyc}'yy — %Cﬂyz - f’y:

PatW — %Jl‘z - 8%%2 - %Jzz = I




Discretization

What numerical methods do you know or have you heard of ?

etc.

Finite Differences (FD), Finite Elements (FE), Finite Volumes (FV),

What do numerical method usually require ?

points or particles, regular grids

unstructured meshes, etc.

What is an “unstructured mesh” ?

A mesh where element indices

do not show a logical structure




Discretization

The discretization subdivides a continuous physical model into a set
of points, elements, control volumes, cells, etc.

= numerical methods approximate functions discretely on these points
or elements

=> the finer the mesh, the more accurate the approximation
=> unstructured meshes are geometrically more flexible
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Discretization of a physical model in 1D

Discretization ( = the process of Mesh Generation) is very simple in 1D

=» a line just has to be subdivided into a set of intervals

regular grid with structured index logic
1 2 3 4 5 6 7

v

i -1 i i +1

irregularly spaced grid, but still structured index logic
(1 2 3 45 - 910 11

v

i -1 i i+

irregularly spaced mesh with unstructured index logic
7 1 2 M 6 310594 8
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Polynomial Approximation of Functions

The approximation can be done by different basis functions, however, in many
cases polynomial functions are used for the approximation.

i L2 .3 The highest exponent occurring
Plr)=c cl& + cox Coil . .
( ) 0 F CLL + CL7 + €L ooy defines the degree of the polynomial !
monomial basis, usually is never used

Initial wave field qo(x) Initial wave field qo(x) Initial wave field qo(x)
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distance x [km] distance x [km] distance x [km]

the most simple case is a piecewise constant approximation, i.e. the chosen
polynomial is a polynomial of degree 0.

In the above case the approximation criterion is
that the constant is equal to the function value qo (3’3 cr ) — €0
at the center of the interval:



Improved Numerical Approximation by Higher Order

32 intervals, order 1

16 intervals, order 1

8 intervals, order 1
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amplitude q [cm/s]

amplitude q [cm/s]

Improved Numerical Approximation by Higher Order
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amplitude q [cm/s]

Improved Numerical Approximation by Higher Order

4 intervals, order 4 4 intervals, order 5 4 intervals, order 6

= mesh refinement and increase of the approximation order improve the approximation

=> which approach is more efficient is often a difficult question to answer and has
to be studied in detail, however, in DG coarse meshes and high oders pay off!

= However, first-order methods usually are very diffusive and of no use
for practical problems, where some reasonable accuracy is required !!!
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Polynomial Approximation in the DG framework \

Inside each interval I (=element) of our discretization, we approximate the solution q(x,t)
numerically by using the reference interval I, and a linear combination of

- time-independent polynomial functions ¢;(¢)in 1D: Legendre Polynomials P,)
as a set of basis functions up to maximum degree N.

- time-dependent degrees of freedom (DOF) ¢ (t)

such that we get

N
g Sty =at)-o(€) = Y alt)-ald)
=0
“Ej : . ) | ) |
co:1nvset§|tri1ozl’1,mmatlon — q{)(f) . (;}U(g) + fj’l(f) - 1 ({;“) + ..

Note that the physical space in I is denoted by x whereas the
reference space in the unit interval I is denoted by 5



Polynomial Approximation in the DG framework

N

q(&t) = aqt)- o) = D alt)-a(l)

[=0
= qo(t) - ¢o(§) + qu(t) - d1(§) + -

This approximation is one of the key ingredients for the extension of the
Discontinuous Galerkin Finite Element method to high-order accuracy.

The mapping into a reference interval (reference element), where the basis

functions are defined leads to an elegant treatment of complicated discretizations

of physical models with deformed or variable-size element.




Polynomial Approximation in the DG framework

N

q(&t) = aqt)- o) = D alt)-a(l)

[=0
= qo(t) - ¢o(§) + qu(t) - d1(§) + -

This approximation is one of the key ingredients for the extension of the
Discontinuous Galerkin Finite Element method to high-order accuracy.

The mapping into a reference interval (reference element), where the basis
functions are defined leads to an elegant treatment of complicated discretizations
of physical models with deformed or variable-size element.

3,:" 3 2D




Approximation Order and Numerical Convergence

To get correct high-order approximations is not easy and implementation has
to be carried out with caution.

=> to check if the approximation method works correctly and reaches the
expected order of accuracy, one has to compute the errors of a numerical
solution compared to an exact solution on a series of refined meshes

=» convergence test

The approximation error E can be written as a function of the mesh spacing h and
the order O as:

E=h°+C
Determining the errors E, and E, for two different mesh spacings h, and h, gives
By = W +C 5 logE1 = Ologhy +logC
Ey, = RS +C logEs = Ologhs + logC
(E
and the order O can log (—1

be computed as O = -
ox (1)




Convergence Test and Error Norms

The functions of the errors E, and E, with respect to the mesh spacings
h, and h, have the form of a straight line on a logarithmic scale.

—o—Order 2
—*—Qrder 3
1 E O 1 } 1 C —+—QOrder 4
oo [ = o2 hq + log . —*—Order 5
o1 o't S Question: —5—Order 6

. T _ . . i i 2 Order 7
log B = Ologhs +logC What is O representing “ $O:d2:8
—£—Order 9

The order O can then be interpreted
as the slope of the error lines.

The discrete error at all points i between the
exact g° and the numerical q" solution can be
measured in different norms, e.g.

- error

1=—00

1E|l, = (h Z 4 — |p)

often the p=2, or the maximum norm are used

= 1 C—qr i , A S S R N S R
HEH% N —021;1?}5:% ‘q? @ | 2 3 4 5 6 7 8 910 12 15 20
1/h




Approximation Order and Numerical Convergence
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Accuracy depence on:

- spatial sampling (mesh spacing)
- distance of propagated wavelength
- approximation order

‘ 2 Elements per wavelength at O5 ‘

high order pays off ! |
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Time step length ™
p g ¥ \\
'V R \\
g AL
B A A A N
— B TR [N
r AN e AP 7,1&7» v QYA = \
: NN S Do Ml R
Every tetrahedron element (m) 04F] SR RIS Sk N
il e IR
s Ay A Y N
. . - NS AN A LR AN Sl
: S Y MY 0 g 210\ ™~
has its own time step 02 P RSO R ey N
it
C | RS A A \\
PR X ¥ ~A KA
o TR & AN
(m) I AR o RS N
[ RO
- 1 [ i 0.2 P R ™
At m) < min AR s
* I PR
/ NT . ) [ AR
21 —|_ 1 I(.n?") 0.4 AR R 2
Umax g

with [, :radius of insphere
amax - Nighest wave velocity
N  :polynomial degree

The condition in (a) is fulfilled and is violated in (b).
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Time step criteria is implemented. However, for stability reasons a smaller time
step has to be chosen: CFL-number

Rule of thumb: O3 CFL-number = 0.5

Empirical: for higher-order smaller numbers, but as high as possible!

ADER-DG enables the use of local time stepping!
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Hierarchy of Matrices — high order is not for free

Matrices in the Discontinuous Galerkin scheme depend on the approximation

order O, i.e. on the degree N of the polynomials.

e.g. matrix of degrees of freedom:
O=2,i.,e.N=1

A

Q" = O=3,ie N=2

e.g. mass matrix
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EE N ENEENEEN
DN N ENEENEEN
DN N ENEENEEN
DN N ENEENEEN

e.g. stiffness and flux matrices

K7
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Pt-Adaptivitat

« Adaptation of the approximation order, e.g. ranging from /%\
04 to 07, according to the insphere radius, which is ’
responsible for time step criterion

- 2 x larger time step with respect to pure O7

-10bt0

-15000

- only 28% of number of degrees of freedom with
respect to pure O7: 400 000 instead of 1.4 million

- 6 x faster than pure O7 simulation, for a similar
accuracy of the results
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Parallel computing

How many computers do | have to use?

» Depends on order of accuracy and system architecture (memory, CPU
frequency, I/O speed, inter-nodal communication speed)

 and has to be figured out individually (at least 2 simulations to recognize
a trend — better or worse efficiency?).

More is better? Not always! More nodes increase the
communication time and, thus, decrease the
time for real computations.

Experience:
» standard cluster: ca. 5,000-10,000 elements per core with O3
to less than 1,000 elements per core with O7

 IBM BlueGene: a quarter of these numbers



Seismic risk of Grenoble elevation
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Problem:

Local time stepping
+
Realistic model

=» computing time varies

strongly in space and time |
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= inhomogeneous 3
load balancing [
caused by asynchronous kK
element updates

=» Group elements
(options in matlab scripts
available)
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The Derivation of the DG Scheme

Part Il



Content of the lecture

» elastic wave equation

» spatial discretization: grids and meshes

* numerical approximation with polynomials
» Riemann problem & numerical flux

« ADER time integration



Background to Numerical Scheme:

SeisSol is based on the Discontinuous Galerkin (DG) Finite Element Method.
It uses a particular Time Integration approach (ADER) developed by Prof. Toro and V.Titarev.
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Elastic wave equation in 2D

System of 5 equations for 5 unknowns Orx s Oyy - Ozy U, U

%aﬂ — (A + Q,u.)%u — )\%’U = 0,

%U’yy — )\%u —(A+ 2‘“')%?’! = 0,
%gw — ,u.(%v + g—yu) = 0,
p%u — %JH — %UIQ = fz,
PoE = 502y ~ 90w = [y,




Simplification of the elastic wave equation to 1D

System of 2 equations for 2 unknowns O , U

o ¢ a _ -
E{TII — (.}\ -+ ZJU)EH = ( .
o, .. d _
Path — 5z%zx = fz,

We will start with the simple model equation of scalar linear advection in 1-D:

g +aqg, =0



Polynomial Approximation in the DG framework \

Inside each interval I (=element) of our discretization, we approximate the solution q(x,t)
numerically by using the reference interval I, and a linear combination of

- time-independent polynomial functions ¢;(¢)in 1D: Legendre Polynomials P,)
as a set of basis functions up to maximum degree N.

- time-dependent degrees of freedom (DOF) ¢ (t)

such that we get

N
g Sty =at)-o(€) = Y alt)-ald)
=0
“Ej : . ) | ) |
co:1nvset§|tri1ozl’1,mmatlon — q{)(f) . (;}U(g) + fj’l(f) - 1 ({;“) + ..

Note that the physical space in I is denoted by x whereas the
reference space in the unit interval I is denoted by 5



Legendre Polynomials — basis functions

Some important properties of the Legendre Polynomials are:

=» defined on the interval -1 <x <1

=>» they are normalized

P,(1) =1

=>» Legendre Polynomials are
symmetric or antisymmetric:

Py(—x) = (=1)"P,(x)

=» they form an orthogonal basis
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The Derivation of the DG Scheme

We will start with the simple model equation of scalar linear advection in 1-D:

g +aqg, =0

The DG-method solves the weak formulation of the problem, given by

/ / O(qr + aqy)dedt =0
JtJx

This is similar to the integral form of hyperbolic conservations laws introduced for
the finite volume schemes, where smooth function ¢ = 1.



The Derivation of the DG Scheme

An intelligent choice of the smooth functions ¢ are the Legendre Polynomials.

If we integrate over one time step At = t"™*! — " and one element (=interval 1), we get

?1—|—1

/ /c:);,—dldqu/ /c;i); (a—) drdt =0

Here the index k specifies which basis function @, i.e. Legendre Polynomials of degree &,
we are using. The range of k, i.e. how many basis functions we are using, depends on the
order of approximation O and therefore on the polynomial degree N.

Question 1: How does the approximation order O depend on the polynomial degree N?

The approximation order O depends on the degree N of the Legendre Polynomials
used to approximate the function q(x,t) like O = N+1.



The Derivation of the DG Scheme

Starting from the previous integral equation

?1—|—1

/ /(D,L—dldf—f—/ /c;*),, (a—) drdt =0

Question:

How does integration
by parts work ?

/f@g(m_

]b/f

< —-——-

I
: I
and integrating the second term by parts leads to )'C
!
fn—l—l tn—l—l fn +1 d
.- 10, _
/ /Q;, — da dt|+ / (adpq] 1; dt / / ( k ) drdti= 0
. Jn '
update term flux term stiffness term or

volume integral

In the following we will go through the approximation and detailed form

of these three terms one by one!



The Update Term

n—l—l
/ /c;:t);,—dI dt

First we have to map the interval I from the physical space into the
reference interval 1, = [0,1].

/ /o;g—dafdt / /@A 1) de dt
Ir

This transformation includes the multiplication with the size || of the interval 1.

Now, use the polynomial approximation of g on the reference interval.
N

(&) =at)-o€) = D at)- o€ = do(t)- do(&)+qult) - o1 () +

[=0

o Question:
This finally lead to the update term Why can we separate

A i gt i the integrals this way?
/ OkOg—‘I‘dfdt 7] 0RO d& /
IR IR

Jtmn

as the basis functions are time-independent and the DOF space-independent !



The Update Term e

o dq
I f" I' ) — (]
| \.IROchzdf /t 5 dt

The orthogonality of the basis
functions ¢leads to the following property of the space integral over the
product of Legendre Polynomials on the reference interval [0,1]:

1
1
OO dE = )
./0 D@ dE TR

Therefore, we can construct the mass matrix M,, for k,/ = 0,...,N
that has only entries on its diagonal

|
My :/ Ok d§
Jo

Question: How does the mass matrix for a scheme of order 3 look like?

The mass matrix for a scheme of order 3 is My =
as the polynomial degree N=2 = £I[=0,1,2

o O =
O w— O

gl o O



The Flux Term

tn—l—l
Mapping the interval I ladyq] 1; dt

~

|
|
1
|
from the physical space Jn X, X
into the reference interval
I, =[0,1] leadstox, =1 and x; = 0.

The approximation of g on the reference interval ¢(£.t) = qi(t) - @1(§) leads to
tn—{—l
won
Jin
tn—}—l
= ladroiqi],; dt

Jin
tn—}—l

(a@k(x-r)sz ()i () — a-@k(ﬂft)@z(i"z)dz(ﬂfz)) dt
t?1+1

_ / (.@km@zu)@f—m(owz(l)@f’l)dt

Jin

Jtn

t?t+1 tn—{—l

= a(owa) [ da-aoaw [ dta)

J Jn



The Flux Term

tn—{—l tn—{—l

o(ouan) [ - o@ay) [ ar)

. t?L . tTL

Again, only the DOF are time-dependent and remain under the time integral.

For completeness we construct the flux matrices F&,;, and FZ,, for k1= 0,...,N
even if the entries are simple.

Fii = on(D)du(1)dé =1 | 4

Fk[Z — @A(O)G)g(l)dg — (_1)A:

Note: This simple form of the flux matrices will change
for multi-dimensional problems, as the boundaries
of elements become edges in 2-D or faces in 3-D ‘I
where the integrals over products of basis
functions have to be computed. |



General Solution using Characteristics

The characteristics or characteristic curves of the scalar linear advection equation
are curves in the x-t plane along which x — at is constant.

t4 —
/ qt +aqy =0,
characteristic curves x = x(t)
with slope 1/a
/ =» for a = const. they are all parallel !

> X

=> values of q simply advect with constant speed a = dx / dt

=>» a particular characteristic passing through x, is given by  x(t) = x, + at

> the general solutionis | q(x,t) = qo(x0) = qo(x — at),

The initial condition translates with speed a, but the shape remains unchanged !



The Riemann Problem — a special initial condition

A hyperbolic equation together with a special initial condition, i.e. piecewise constant
values with a single discontinuity at one point, is called the Riemann Problem.

a(xi
PDE: ¢ +aq, =0, a !
|
qr, 1 x <0, :
IC:  q(x,0) = qo(x) = . : =
qgr 1t x>0, |
x=0
Using characteristics the initial discontinuity propagates with speed a
by a distance x = at during time 1.
=>» this characteristic separates the left and right states characteristic curve
and the solution of the Riemann Problem is t 4 x—at=0
. q
g, if z—at<O0, - r
q(x,t) = qo(x —at) = . x—at<0 x—at>0
gr I x—at >0, ‘
" X

Xx=0

=» this characteristic curve is the only one across which the solution changes !



The Riemann Problem ax}  q,

dr

=>» the Riemann Problem is the combination of !
a PDE and a piecewise constant initial condition X=0

v

=> solving the Riemann Problem gives information
which is used to compute numerical fluxes and update solutions in time

=>» the solution of a Riemann Problem is typically a similarity solution, i.e. a function
of x/t, and consists of waves that propagate away from the original discontinuity
with constant wave speeds

=> the solution of a Riemann Problem is easily solved in terms of eigenvalues and
eigenvectors of the system matrix A

To simulate seismic wave propagation with the DG method, we need
= numerical fluxes between neighboring elements
= solutions of the Riemann Problem stated by the seismic wave equation




Linear Advection - analytical vs. numerical solutions

the scalar linear advection problem with constant propagation speed is simple
=» an analytical solution q can be computed that is exact

for more difficult problems it is much harder or impossible to find such solutions
=» a humerical solution g, has to be computed that is only approximate

-as cheap as possible!

The main goal is the development of humerical methods that are
- as accurate as possible while computationally

—

qO(X) = q(XJo)

amplitude q
o

0 . 4 6 8
distance x

10

amplitude q
o

— analytical
------ numerical

qn(X,6) = q(x,6)

3 4 5 8 10
distance x



The Stiffness Term

fn +1
d@,t
Mapping the interval 1 / / ( ) da dt
from the physical space
into the reference interval 9 1
I, = [0,1] and considering the resulting change in derivatives Cri T % gives

[0 (Gra)amie= [ ] (o) mac

The approximation of g on the reference interval ¢(S.t) =~ qi(t) - @1(§) leads to

tn—{—l A~
1()015,,\) ()O}C, .
a———01q; | |I|dEdt = a od/ qr dt
A ./IR<|I|05”"5 ), oe @k, @

Question: Why can we separate the integrals here?

as again, only the DOF are time-dependent and remain under the time integral,
while the space integral over the product of basis functions with their
space-derivatives can be separated.



The Stiffness Term

tn—{—l
Now, the integral over the 0o q dt
product of basis functions @ ], o¢ o ¢! f o
with their space derivatives "

has to be computed explicitly.

Question: How would you solve this space integral?

=» The space integral can be pre-calculated analytically or computed numerically
using a Gaussian integration rule that is exact for the required polynomial degree
obtained through the product in the integrand.



The Stiffness Term

n4+1
lonsy ! .
a — @ d& / g dt
JIn d‘f n
The stiffness matrix K,, for £,/ = 0,...,N is given as
. ()OA ,
Ky = 25 g
Jo 0§

and is very sparse, i.e. only a few entries are non-zero. This property also remains
for the multi-dimensional case.

Question: How do the entries of the first row for k=0 look like?

The stiffness matrix for a scheme of order 3 is K =
as the polynomial degree N=2 = £I/=0,1,2

O o O
o O O
o O O



The DG-Scheme

Putting together all three terms again leads to the following formulation

tn—i—l tn—f—l tn—f—l tn—i—l
aq R ~i 1L ri—1 - A
|I J\[M W dt + a'kal q dt|— aFM ql dt| (II\M qi dt
tn tn tn tn
update term flux terms stiffness term or

volume integral

Each term includes a time integral over one time step At = t"+1 - ",

In order to obtain a numerical scheme that provides the same accuracy
in time as in space we need to approximate these time integrals in the flux and
stiffness terms with the same accuracy as the chosen space accuracy.

=» One choice is using a Runge-Kutta scheme for accurate time integration.

=» Our choice is following the ADER-approach using high-order derivatives



The ADER Time Integration

The basis of high-order time integration is the Taylor Series Expansion in time!

. . At 9 -
q(qu +l) — Q(I*f _|_Af) — Z ]‘ BYE Q(I t’ ) First

: ingredient
1=0

The ADER time integration method follows the technique of Lax-Wendroff, where the
time derivative is replaced by the space derivative, by using the governing PDE, i.e.

9, 0

dfq(:r, t) = —a aq(m t)

This can be extended to a recursive formula for higher-order derivatives.

QI t1 9, ( o’

Oti+1 qlx,t) = —a Ox \ Ot

q(x, f))
Second

This approach is often called the Cauchy-Kowalewski Procedure ! ingredient



| a(6.t) = qi(t) -
The Cauchy-Kowalewski Procedure

If we now formulate the Taylor series expansion for the degrees of freedom we get
N

At dJ
n+1 tn
18 Z; o 1)

and finally, for the time integration of the degrees of freedom we have

tn—{—l

Jj+1 J
/ Gi(t) dt = Z(Aiwddw“ )

tﬂ;

with
Hit1 ) = a fI (bk%fg Y (™)
oti+1 I [, dndud€ o1 !

So we can determine the required time integrals with the spatial order of accuracy !

n—I—l tn—i—l tn—l—l tn—i—l

(( : i - N
f T gt 4 ak R / g/ dt|— al'L / g~ dt|— aKp / G dt|=0

i— T -{- T -{- T -!‘- T

?1(8)



The Fully Discrete ADER-DG Scheme

We now have to find an update formula of our degrees of freedom from time level
t" to t"*1 using the formulation

tn—l—l tn—l—l tn—i—l tn—i—l
dq N i i X
| My, deHaFg f gl dt — aF; / gt dt — aKy, / Grdt =0
5 .
tn tn tn tn

Thus we carry out the integration of the update term leading to
tn—{—l
, 8@\5 , ~ (4T S (4
[ [| M. / Wdt = |I[Mp (Cﬂ(f 1y —at ))

tn

If we solve the equation now for the degrees of freedom at time level t"*1 we get
the fully discrete update formula of the ADER-DG scheme for element i

M

q

tn—i—l tn—i—l tn—i—l
() = i) = (ak / Gi(t") dt—aFk / i) dt—al / i) dt) /|1
-!:—'i"l -!;71. -!jn

My

The order is determined by the number of degrees of freedom (the range of k,I)!




Matrix-vector formulation of the system in 2D

The system of the isotropic, elastic wave
equation can be written as

le) 40@ 00

—V + B— — ,SY.
ot e dy | -
with the vector Q of unknowns, the
Jacobian matrices A and B and
the source term S
B =

[ Orr ) [0
Ty 0
Q=1| 0.y |. 5= 0

u fz/p
\ v ) Kfyf::}

—
oo O
-

¥

0 0
/ 0

0O 0O

0
0
0
0

oo oo

— ( A+ 2 p_r.) 0
—A 0
0 — 1L
0 0
0 0
0 —A
0 —(A+2p)
— [t 0
0 0
0 0

)




The Cauchy-Kowalewski Procedure

If we apply this methodology on our linear advection equation in the reference space,
we get N

At I
q(f,tn—}—l) _ Z _t{d_ (‘fatn)

h = gl ot
wit
gt @« 9,0

In weak formulation and expressing q by ¢(&,t) = qi(t) - (&) leads to

ot a9
/ O BT 21 dg:,/jﬁ, on( - 1] 9¢ 0t i) d¢

Hi+l a 510} O
O déE == = —— | oOr— dé =—q
./IR t7H Il Sy, 08 ot

Hi+1 a fI C’);Dd”f d€ ()J
o T = T T ronde oi7Y




Calculation of the Degrees of feedom (DOF)

Now we have everything to compute the N+17 degrees of freedom given as

Jr a(&:1) - dn(€) dE
fIR o1(&) - Dy (&) dE

a(t) =

Using the orthogonality of the basis functions ¢ gives

R f[R Q(‘f* t) : @5(5) df
ql(t) — 1
2011

Applying Gauss-Legendre numerical integration over discrete integration points &
finally leads to

qt) = (20+1) Z’Ujo ) - o1(&) fori=0,...,N




