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Tomography is a 3-stage process: 

 

(1) forward problem 

 

(2) sensitivities 

 

(3) optimisation 

A collection of recent applications 

waveform inversion for 3D 

Earth structure  
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PART  I 
 

NUMERICAL SOLUTION OF THE SEISMIC WAVE EQUATION 

1. Introduction 

2. Spectral-element discretisation 

3. Practical 

4. Special topics (dissipation, point sources, absorbing boundaries) 



Introduction 



Introduction 

(x,t)f(x,t)u(x,t)C(x,t)uρ ilkijklji  ][

elastic displacement field 

density                       elastic tensor                                       external forces 



Introduction 

(x,t)f(x,t)u(x,t)C(x,t)uρ ilkijklji  ][

elastic displacement field 

density                       elastic tensor                                       external forces 

spectral-elements in a spherical section 

 

operates in natural spherical coordinates 

 

visco-elastic dissipation 

 

radial anisotropy 

 

absorbing boundaries: PML 



Introduction 

   accurate solutions 

 

   easy to use 

 

   runs fast when used correctly 

 

   code is simple and easy to modify 

 

   robust 

Advantages 

   no poles & no core 

 

   only regular-shaped elements 

 

   elements become smaller with depth 

 

   no topography 

 

   no fluid-solid interaction 

Disadvantages 

SES3D.inv is very efficient for a very specific class of problems: 

 

wave propagation on local to continental scales  

where topography can be ignored 



Spectral-element discretisation 



Spectral-element discretisation 

Priolo, Carcione & Seriani: 1994 

reflection and transmission of 

surface waves at material 

discontinuities 

• originally developed in fluid dynamics (Patera, 1984) 

 

• migrated to seismology in the early 1990‘s (Seriani & Priolo, 1991) 

 

• major advantage: accurate modelling of interfaces and the free surface (with topography) 

The SEM origins 



Spectral-element discretisation 

The SEM concept in 1D: Weak form of the wave equation  
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The SEM concept in 1D: Weak form of the wave equation  
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Spectral-element discretisation 

The SEM concept in 1D: Weak form of the wave equation  
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integrate by parts 

use the boundary conditions 



Spectral-element discretisation 
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Solving the weak form of the wave equation means 

  

to find a displacement field u(x,t) such that 

is satisfied for any differentiable test function w(x). 

The SEM concept in 1D: Weak form of the wave equation  



Spectral-element discretisation 
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Solving the weak form of the wave equation means 

  

to find a displacement field u(x,t) such that 

is satisfied for any differentiable test function w(x). 

The SEM concept in 1D: Weak form of the wave equation  

Basis of element-based methods (e.g. finite elements, spectral elements, 

discontinuous Galerkin) 

Boundary conditions are implicitly satisfied (no additional work required, as 

in finite-difference methods) 



Spectral-element discretisation 

The SEM concept in 1D: Spatial discretisation  

 

























iii EEE
dxfwdxu

x
w

x
μdxuwρ 

0                                                          L 

    E1    E2        E3       E4      E5       E6   E7 

1. decompose the computational domain [0, L] into disjoint elements Ei 

 

2. consider integral element-wise 

Ei 



Spectral-element discretisation 

The SEM concept in 1D: Spatial discretisation  
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3. map each element to the reference interval [-1, 1] 
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Spectral-element discretisation 

The SEM concept in 1D: Spatial discretisation  
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Is the same for every element !!! 

All elements can now be treated in the same way. 
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Spectral-element discretisation 

The SEM concept in 1D: Spatial discretisation  

...dy
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dx
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4. Approximate u by interpolating polynomials. 
equidistant collocation points 

exact wave field 

approximation (interpolant) 

degree 6 

7 collocation points 

Runge‘s phenomenon 



Spectral-element discretisation 

The SEM concept in 1D: Spatial discretisation  

...dy
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4. Approximate u by interpolating polynomials. 

Gauss-Lobatto-Legendre points 

exact wave field 

approximation (interpolant) 

degree 6 

7 collocation points 



Spectral-element discretisation 

The SEM concept in 1D: Spatial discretisation  

4. Approximate u by Lagrange polynomials of degree N collocated at the GLL points 

5. choose Lagrange polynomials also for the test function w 
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M=mass matrix 



Spectral-element discretisation 

The SEM concept in 1D: Spatial discretisation  
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M=mass matrix 

6. The integral is approximated using Gauss-Lobatto-Legendre (GLL) quadrature.  

 Mass matrix is diagonal !!! 

 Integration exact for polynomials up to degree 2N-1 

4. Approximate u by Lagrange polynomials of degree N collocated at the GLL points 

5. choose Lagrange polynomials also for the test function w 



Spectral-element discretisation 
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The SEM concept in 1D: Spatial discretisation  



Spectral-element discretisation 
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The SEM concept in 1D: Spatial discretisation  

repeat this for the remaining two terms … 
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stiffness matrix discrete force vector 



Spectral-element discretisation 
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The SEM concept in 1D: Spatial discretisation  

 uKfMu  1

partial  

differential  

equation 

spatial discretisation 

ordinary differential  

equation for the  

polynomial coefficients 

enforce continuity between elements 

 

weak form, global 



Spectral-element discretisation 

The SEM concept in 3D 

accurate solutions: discontinuities need to coincide with element boundaries 

low velocities: short wavelength → small elements 

high velocities: long wavelength → large elements 

many small elements → high computational costs !!! 



Spectral-element discretisation 

The SEM concept in 3D 

Realistic example: The Grenoble valley 

Stupazzini et al. (2009) 



Spectral-element discretisation 

The SEM concept in 3D 

Essentially the same as in 1D: 

1. mapping to the reference cube [-1 ,1]3 

2. polynomial approximation (GLL points) 

3. numerical integration (GLL quadrature) 
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deformed element reference cube 



Spectral-element discretisation 

The SEM concept in 3D: SES3D discretisation  

Each element is a small spherical subsection. 

Discretisation of a spherical section without poles and core. 

Speeds up the calculations. 

Simplifies the programme code. 

Reduces flexibility. 



Practical 

1. SES3D file structure 

2. Input files 

3. Model generation 

4. Forward simulation: wiggly lines – at last! 



Practical 

File structure 

SOURCE 

DATA 

MAIN 

MODELS 

MATLAB 

INPUT 

OUTPUT 

COORDINATES 

LOGFILES 

MAIN 

SOURCE 



Practical 

File structure 

SOURCE 

DATA 

MAIN 

MODELS 

MATLAB 

INPUT 

OUTPUT 

COORDINATES 

LOGFILES 

MAIN 

SOURCE 

seismograms, snapshots, kernels 

files with collocation point coordinates 

logfiles written during runtime 

simulation parameters, source time function, receivers 

FORTRAN source code 

executables and scripts for parallel jobs 

collection of Matlab (plotting) tools 

Earth model properties (density, elastic parameters, …) 

executables for model generation 

source code for model generation 



Practical 

Example 

regional-scale wave 

propagation 

1 processor (not parallel) 



Practical 

Input files: Par file 

     total number of time steps (nt=500) 

     time increment in seconds (dt=0.75) 

     simulation length = nt∙dt (= 375 s) 

     dt must satisfy the stability criterion: 

 

 

 

 

3.0,
max

min  c
v

dx
cdt



Practical 

     source position      

     colatitude (90°-latitude) in ° (90°) 

     longitude in ° (2.5°) 

     depth in m, not km (30000 m) 

 

Input files: Par file 



Practical 

     source characteristics      

     source type: 1,2,3=single forces, 10=moment tensor 

     moment tensor components in Nm 

     Mtt, Mpp, Mrr, Mtp, Mtr, Mpr 

  

 

Input files: Par file 



Practical 

     geographic region      

     minimum and maximum colatitude in° (82.5°, 97.5°) 

     minimum and maximum longitude in ° (-5.0°, 20.0°) 

     minimum and maximum radius in m (5371e3 m, 6371e3 m) 

  

 

Input files: Par file 



Practical 

Input files: Par file 

      radial anisotropy switched on (=1) or off (=0) 

      visco-elastic dissipation switched on (=1) or off (=1) 

      structural model (2=PREM) 



Practical 

Input files: Par file 

Spatial discretisation 

      number of elements in theta (colatitude) direction (15) 

      number of elements in phi (longitude) direction (25) 

      number of elements in vertical direction (10) 

      Lagrange polynomial degree 



Practical 

Input files: Par file 

THE rule of thumb 

      element size in theta (colatitude) direction: ≈ 110 km 

      element size in phi (longitude) direction: ≈ 110 km 

      element size in vertical direction: ≈ 100 km 

  

Use at least 2 elements per minimum wavelength!!! 

 

 

 

 

s
skm

km

velocity

sizeelement

v
T 60

/5.3

200

min

max2









Practical 

Input files: Par file 

Parallelisation 

      number of processors in theta (colatitude) direction (1) 

      number of processors in phi (longitude) direction (1) 

      number of processors in vertical direction (1) 



Practical 

Input files: Par file 

directory where the output (e.g. seismograms) is written 



Practical 

Input files: Par file 

write snapshots of the wave field (1=yes, 0=no) into the 

OUTPUT DIRECTORY every ssamp (=100) time steps 



Practical 

Input files: Par file 

store velocity and strain field (1=yes, 0=no) every samp_ad 

(=10) time steps in the directory below (../INTERMEDIATE) 

 

Needed for the computation of sensitivity kernels. 



Practical 

Input files: source time function (stf) 

Heaviside function, bandpass-filtered between 60 s and 500 s 

 

lower cutoff period (60 s) dictated by the size of the elements 

 

upper cutoff (500 s) ensures that the stf returns to zero 

 

always use bandlimited stf‘s 

time domain freq. domain 



Practical 

Input files: source time function (stf) 

Heaviside function, bandpass-filtered between 60 s and 500 s 

 

lower cutoff period (60 s) dictated by the size of the elements 

 

upper cutoff (500 s) ensures that the stf returns to zero 

 

always use bandlimited stf‘s 

stf: plain ASCII list of numbers 



Practical 

Input files: receiver configuration (recfile) 

number of receivers (2) 

first station name (XX01) 

station colatitude (90.0°), longitude (7.5°), depth (0.0 m) 

second station name (XX02) 

… 



Practical 

Model generation 

MODELS 

MAIN 

SOURCE 

run generate_models.exe 

1 file for each model parameter (lambda, mu, 1/rho) … 

 

 … and for each processor. 



Practical 

Run SES3D 

MAIN run main.exe and wait … 



Practical 

Simulation 

75 s 



Practical 

Simulation 

150 s 



Practical 

Simulation 

225 s 



Practical 

Simulation 

300 s 



Practical 

Simulation 

375 s 

km/s4.1
s75

km305

s75

elements2
v 4

3



fundamental-mode Rayleigh wave @ 60 s period 



Practical 

Results: Synthetic seismograms 

vr [m/s] 

vϕ [m/s] 

vθ [m/s] 

prominent Rayleigh wave 

 

no displacement on the N-S 

component 

 

pollution by reflections 

because absorbing 

boundaries are switched off 



Special Topics 

1. Visco-elastic dissipation 

2. Point sources 

3. Absorbing boundaries 



Special Topics 

Dissipation 

Again, the concept in 1D: 

The Earth is assumed to have a visco-elastic rheology defined as:  

This convolution is very inconvenient in time-domain wave propagation!  



Special Topics 

Dissipation 

Again, the concept in 1D: 

The Earth is assumed to have a visco-elastic rheology defined as:  

For the stress-relaxation function C(t) one assumes a superposition of standard-

linear solids:  

C(t) describes the stress that occurs in response to a unit step strain. 

The parameters of C(t) are chosen such that the corresponding Q(ω) 

takes a specific form. 



Special Topics 

Dissipation 

+ + 

+                      =   constant 

Example for N=3: 

n=1 n=2 n=3 



Special Topics 

Dissipation 

The example was designed to have Q=100=const within a frequency 

range from 0.02 Hz to 0.2 Hz.  

More mechanisms increase the quality of the Q-const approximation 

and also the computational costs.  



Special Topics 

Point sources 

There are generally two ways of implementing a point source – each with its 

advantages and disadvantages: 



Special Topics 

Point sources 

There are generally two ways of implementing a point source – each with its 

advantages and disadvantages: 

1. Grid point implementation 

Force acts at the grid point that is closest to the true point source location.  

grid points 

implemented 

point source 

true point 

source location 

easy to implement 

 

correct near field 

numerical error when the true 

location of the point force is too 

far from the nearest grid point  



Special Topics 

Point sources 

There are generally two ways of implementing a point source – each with its 

advantages and disadvantages: 

2. Lowpass filtered δ-function (implemented in SES3D) 

The δ-function is approximated by a polynomial (degree and collocation 

points as in the spatial discretisation) 

correct solution in the 

far field for any source 

position 

implementation more difficult 

 

near-field inaccurate (within ≈ 2 

elements around the source) 
Fig.: Polynomial approximation of the δ-function (degree 

4) within one 2D element, for different source positions 

(xs, ys). 



Special Topics 

Absorbing boundaries 

Methods to avoid reflections from unphysical boundaries fall into 2 categories: 

1. Absorbing boundary conditions 

Boundary conditions that prevent the popagation of energy into the medium. 

easy and elegant implementation 

highly inefficient for large angles of incidence 

2. Absorbing boundary layers (implemented in SES3D) 

Boundary layers where the amplitudes of incoming waves decay rapidly 

efficient for all angles of incidence 

implementation more involved 

can be unstable 

can be unstable 



Special Topics 

Absorbing boundaries 

2. Absorbing boundary layers (implemented in SES3D) 

Perfectly Matched Layers (PML) are the most popular and efficient 

absorbing technique. 

Wave equation is modified within the boundary region so that incoming 

waves decay exponentially: 

Fig.: SES3D wavefield snapshots, illustrating the absorption of energy within the PML region. 



Special Topics 

Absorbing boundaries 

2. Absorbing boundary layers (implemented in SES3D) 

Perfectly Matched Layers (PML) are the most popular and efficient 

absorbing technique. 

Wave equation is modified within the boundary region so that incoming 

waves decay exponentially: 

Fig.: Total kinetic energy within the 

model as a function of time. The 

energy decreases rapidly but does 

not reach 0 due to imprefect 

absorption. 


