

PART II

FRÉCHET KERNELS AND THE ADJOINT METHOD

- 1. Setup of the tomographic problem: Why gradients?
- 2. The adjoint method
- 3. Practical
- 4. Special topics (source imaging and time reversal)

Setup of the tomographic problem:

Why gradients?

- Find an Earth model **m** such that a suitably defined misfit X is minimal.
- The number of model parameters and the numerical cost of the forward problem prevent the application of probabilistic methods.
- The minimisation proceeds iteratively:

1. Start from initial Earth model \mathbf{m}_0

1. Start from initial Earth model \mathbf{m}_0

$$h_i \propto -\frac{\partial X}{\partial m}$$

The family of gradient methods:

- method of steepst descent: $h_i = -\partial X / \partial m$
- conjugate-gradient methods
- Newton and Newton-like methods
- variable-metric methods

•

1. Start from initial Earth model \mathbf{m}_0

2. Update according to
$$m_{i+1} = m_i + \gamma_i h_i$$
 with $X(m_{i+1}) < X(m_i)$ 1.1
step length descent direction

 $\mathbf{m}_0 \ \mathbf{m}_1$

1. Start from initial Earth model \mathbf{m}_0

- The full gradient with all its components is needed in each iteration.
- The most straightforward approach: approximate the gradient by finite-differences:

$$\frac{\partial \mathbf{X}(m)}{\partial m_k} \approx \frac{\mathbf{X}(\dots, m_k + h, \dots) - \mathbf{X}(\dots, m_k, \dots)}{h}$$

Example with 500,000 model parameters:

500,001 forward simulations

- **x** 0.5 h per simulation
- x 126 processors
- **x** 50 earthquakes
- **x** 4 simulations per conjugate gradient iteration
- x 10 conjugate gradient iterations

6.3e¹⁰ cpu hours ≈ 720,000 cpu years

SOLUTIONS:

Automatic differentiation (AD, <u>www.autodiff.org</u>)

- Differentiation of computer programmes
- Automatic but inefficient because ignorant about physics

Adjoint method

- Developed in optimal control theory (J.-L- Lions, 1960s)
- Express gradients in terms of forward and adjoint fields
- Can be a bit tedious, but is full of interesting physics.

- 1. Prelude: Misfits and Fréchet derivatives
- 2. The adjoint trick
- 3. Examples
- 4. The adjoint wave equation

Prelude I: Fréchet and classical derivatives

The adjoint method can be derived in many different ways:

- Born approximation (e.g. Tarantola)
- Lagrange multipliers (e.g. Liu & Tromp)
- Data assimilation (e.g. Chen)
- Operator approach
 - elegant and structured
 - very general
 - leads to simple recipes

requires a bit more mathematical machinery

Prelude I: Fréchet and classical derivatives

- The Earth model m(x) is a continuously defined function.
- Examples: $\rho(x)$, $v_{p}(x)$, $v_{s}(x)$, Q(x),
- The Fréchet derivative of the misfit X(m) is the infinitesimal change of X(m) as we pass from Earth model m(x) to m(x)+δm(x):

$$\frac{d\mathbf{X}}{dm} \, \delta m \coloneqq \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \Big[\mathbf{X}(m + \varepsilon \, \delta m) - \mathbf{X}(m) \Big]$$

Prelude I: Fréchet and classical derivatives

- The Earth model m(x) is a continuously defined function.
- Examples: $\rho(x)$, $v_p(x)$, $v_s(x)$, Q(x),
- The Fréchet derivative of the misfit X(m) is the infinitesimal change of X(m) as we pass from Earth model m(x) to m(x)+δm(x):

$$\frac{d\mathbf{X}}{dm} \, \delta m \coloneqq \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \Big[\mathbf{X}(m + \varepsilon \, \delta m) - \mathbf{X}(m) \Big]$$

For practical reasons, the continuous Earth model is parameterised in terms of a finite number of basis functions b_i(x):

$$m(x) = \sum_{i=1}^{N} m_i b_i(x)$$

2.1

Prelude I: Fréchet and classical derivatives

The misfit X is then a function of the discrete model parameters m_i:

$$X(m) = X[m_1b_1(x) + ... + m_ib_i(x) + ... + m_Nb_N(x)]$$

2.3

The classical partial derivatives with respect to the model parameters m_i can be expressed in terms of the Fréchet derivative:

$$\frac{dX}{dm_i} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [X(m_1 b_1 + \dots + (m_i + \varepsilon)b_i + \dots + m_N b_N) - X(m_1 b_1 + \dots + m_i \ b_i + \dots + m_N b_N)]$$

$$\frac{dX}{dm_i} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[X(m + \varepsilon b_i) - X(m) \right] = \frac{dX}{dm} b_i$$

2.4

Prelude I: Fréchet and classical derivatives

$$\frac{dX}{dm_i} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[X(m + \varepsilon b_i) - X(m) \right] = \frac{dX}{dm} b_i$$

The classical partial derivative with respect to the discrete model parameter m_i is equal to the Fréchet derivative in the direction of the basis function b_i(x).

2.5

We need to find an efficient way to compute the Fréchet derivative of X for any direction (Earth model perturbation).

Prelude II: Misfit functionals

The classical (though not very useful) misfit functional in full waveform inversion is:

$$X = \frac{1}{2} \int \left[u(m; x^{r}, t) - u_{0}(x^{r}, t) \right]^{2} dt$$
synthetic waveform receiver observed waveform

This can be rewritten as an integral over both time and space:

$$X = \frac{1}{2} \iint (u - u_0)^2 \,\delta(x - x^r) \,dt \,d^3x$$

The Fréchet derivative of the misfit functional is then:

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot (u - u_0)\delta(x - x^r) dt d^3 x, \qquad \delta u = \frac{du}{dm}\delta m$$

2.7

2.8

Prelude II: Misfit functionals

The Fréchet derivative of the misfit functional is then:

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot (u - u_0)\delta(x - x^r) dt d^3x$$

In fact, the Fréchet derivative of **any** misfit functional can be written in this form:

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot f^* \, dt \, d^3 x$$

2.9

2.10

2.8

In the special case from above:

$$f^* = (u - u_0)\delta(x - x^r)$$

But f* can be anything, depending on the misfit you choose.

Fréchet derivative of the misfit functional: Problem statement

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot f^* \, dt \, d^3 x, \quad with \quad \delta u = \frac{du}{dm}\delta m$$

- The practical difficulty lies in the presence of the Fréchet derivative of the wave field u, that we need to know for any model perturbation δm.
- Solution 2.10. Set δ_{0} = δ_{1} = δ_{1} = δ_{2} = δ_{1} = δ_{2} = δ_{2}
- Solution of another differential equation the adjoint equation.

The trick

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot f^* \, dt \, d^3 x, \quad with \quad \delta u = \frac{du}{dm}\delta m$$
 2.9

- To keep the treatment as general as possible, we write the wave equation in a condensed form:
- For the special case of the 1D wave equation:

$$\rho \ddot{u} - \partial_x (\mu \partial_x u) = f$$

 $L(u,m) = f$ $m = (\rho, \mu)$

2.11

- But L could represent any other wave equation (e.g. 3D anisotropic, visco-elastic, ...) or even any other PDE.
- Compute the Fréchet derivative of L in the direction δm :

$$\frac{dL(u,m)}{du}\delta u + \frac{dL(u,m)}{dm}\delta m = 0$$

The trick

$$\frac{dL(u,m)}{du}\delta u + \frac{dL(u,m)}{dm}\delta m = 0$$

We can simplify the first term when L is linear in u (which is the case for the wave equation):

$$\frac{dL(u)}{du} \delta u = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[L(u + \varepsilon \, \delta u) - L(u) \right]$$
$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[L(u) + \varepsilon \, L(\delta u) - L(u) \right] = L(\delta u)$$

Then going back to equation 2.13:

$$L(\delta u) + \frac{dL(u)}{dm}\delta m = 0$$

... where the explicit dependence on m is omitted for clarity.

2.13

2.14

The trick

$$L(\delta u) + \frac{dL(u)}{dm}\delta m = 0$$
2.14

Now we multiply equation 2.14 with an arbitrary (but differentiable) test function u*(x,t), and integrate over time and space.

$$\iint u^* \cdot \left[L(\delta u) + \frac{dL(u)}{dm} \delta m \right] dt \, d^3 x = 0$$

Adding equation 2.15 to the Fréchet derivative of the misfit

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot f^* \, dt \, d^3 x$$

2.9

2.16

2.15

gives:

$$\frac{dX}{dm}\delta m = \iint \left[\delta u \cdot f^* + u^* \cdot L(\delta u) + u^* \cdot \frac{dL(u)}{dm}\delta m\right] dt \, d^3x$$

The trick

$$\frac{dX}{dm}\delta m = \iint \left[\delta u \cdot f^* + u^* \cdot L(\delta u) + u^* \cdot \frac{dL(u)}{dm}\delta m\right] dt \, d^3x$$

2.16

We can eliminate δu from equation 2.16 with the help of adjoint of L:

Find u* and L* such that:

$$\iint u^* \cdot L(\delta u) \, dt \, d^3 x = \iint \delta u \cdot L^*(u^*) \, dt \, d^3 x$$

2.17

Finding the adjoints is the actual challenge, but if we manage to do so, we can transform equation 2.16 to:

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot \left[f^* + L^*(u^*)\right] dt \, d^3x + \iint \left[u^* \cdot \frac{dL(u)}{dm}\delta m\right] dt \, d^3x$$

The trick

$$\frac{dX}{dm}\delta m = \iint \delta u \cdot \left[f^* + L^*(u^*)\right] dt \, d^3x + \iint \left[u^* \cdot \frac{dL(u)}{dm}\delta m\right] dt \, d^3x$$

We can eliminate δu when the **adjoint field** u^* satisfies the **adjoint equation**:

$$L^*(u^*) = -f^*$$
 2.20

Computing the Fréchet derivative of the misfit X then becomes quite easy:

$$\frac{dX}{dm}\delta m = \iint \left[u^* \cdot \frac{dL(u)}{dm} \delta m \right] dt \, d^3x$$

2.21

2.19

Everything in equation 2.21 is known.

Examples

The Fréchet derivative of the misfit X:

$$\frac{dX}{dm} \,\delta m = \iint \left[u^* \cdot \frac{dL(u)}{dm} \,\delta m \right] dt \, d^3 x$$

Examples

The Fréchet derivative of the misfit X:

$$\frac{dX}{dm}\,\delta m = \iint \left[u^* \cdot \frac{dL(u)}{dm}\,\delta m \right] dt\,d^3x$$

2.21

1D wave equation:

$$L(u) = \rho \ddot{u} - \partial_x (\mu \partial_x u)$$
 2.22

Derivative of the wave operator:

$$\frac{dL(u)}{d\rho}\delta\rho = \delta\rho \,\ddot{u}$$

2.23

Fréchet derivative of X:

$$\frac{dX}{d\rho}\delta\rho = \iint \delta\rho \left(u^* \cdot \ddot{u}\right) dt \, dx = -\iint \delta\rho \left(\dot{u}^* \cdot \dot{u}\right) dt \, dx$$

Examples

The Fréchet derivative of the misfit X:

$$\frac{dX}{dm}\,\delta m = \iint \left[u^* \cdot \frac{dL(u)}{dm}\,\delta m \right] dt\,d^3x$$

2.21

1D wave equation:

$$L(u) = \rho \ddot{u} - \partial_x (\mu \partial_x u)$$
 2.22

Derivative of the wave operator:

$$\frac{dL(u)}{d\mu}\delta\mu = -\partial_x(\delta\mu\partial_x u)$$

Fréchet derivatives of X:

$$\frac{d\mathbf{X}}{d\mu}\delta\mu = -\iint \left[u^*\cdot\partial_x(\delta\mu\partial_x u)\right]dt\,dx = \iint \delta\mu\partial_x u^*\cdot\partial_x u\,dt\,dx$$

2.25

Examples

Fréchet derivatives of X:

$$\begin{aligned} \frac{dX}{d\rho} \delta\rho &= -\iint \delta\rho \left(\dot{u}^* \cdot \dot{u} \right) dt \, dx \\ &= \int \delta\rho \left(\dot{u}^* \cdot \dot{u} \right) dt \, dx = \int \delta\rho \, K_{\rho} \, dx \\ 2.25' \\ \text{Fréchet kernel w.r.t. density:} \\ K_{\rho} &= -\int \dot{u}^* \cdot \dot{u} \, dt \\ 2.25'' \\ \hline \frac{dX}{d\mu} \delta\mu &= \iint \delta\mu \partial_x u^* \cdot \partial_x u \, dt \, dx \\ &= \int \delta\mu \, K_{\mu} \, dx \\ 2.26' \\ \text{Fréchet kernel w.r.t. the shear modulus:} \\ K_{\mu} &= \int \partial_x u^* \cdot \partial_x u \, dt \\ 2.26'' \\ \text{Fréchet kernel w.r.t. the shear modulus:} \\ \end{aligned}$$

Fréchet kernels are the volumetric densities of the Fréchet derivatives.

Examples

For the 3D elastic wave equation:

$$\begin{split} K^{0}_{\rho} &= -\int_{T} \dot{\mathbf{u}}^{\dagger} \cdot \dot{\mathbf{u}} dt \\ K^{0}_{\lambda} &= \int_{T} (\nabla \cdot \mathbf{u}) (\nabla \cdot \mathbf{u}^{\dagger}) dt \\ K^{0}_{\mu} &= \int_{T} [(\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u}) + (\nabla \mathbf{u}^{\dagger}) : (\nabla \mathbf{u})^{T}] dt \end{split}$$

... and with a different parameterisation:

$$K_{\rho} = K_{\rho}^{0} + (v_{\rm P}^{2} - 2v_{\rm s}^{2})K_{\lambda}^{0} + v_{\rm s}^{2}K_{\mu}^{0}$$
$$K_{\nu_{\rm S}} = 2\rho v_{\rm s}K_{\mu}^{0} - 4\rho v_{\rm s}K_{\lambda}^{0}$$
$$K_{\nu_{\rm P}} = 2\rho v_{\rm P}K_{\lambda}^{0}$$

Fréchet derivatives depend on the parameterisation!!!

2.27

The adjoint operator for the 1D wave equation

1D wave equation:

$$L(u) = \rho \ddot{u} - \partial_x (\mu \partial_x u)$$

with initial conditions:

$$u|_{t=0} = \dot{u}|_{t=0} = 0$$
 3.2

and boundary conditions:

$$\partial_x u|_{x=0} = \partial_x u|_{x=L} = 0$$
3.3

We need to find the adjoint field u* and the adjoint operator L* such that the following equation holds for any δu that satisfies the boundary and initial conditions:

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) \, dt \, dx = \int_{x=0}^{L} \int_{t=0}^{T} \delta u \cdot L^*(u^*) \, dt \, dx$$

3.4

The adjoint operator for the 1D wave equation

Find u^{*} and L^{*} such that the following equation holds for **any** δu :

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) \, dt \, dx = \int_{x=0}^{L} \int_{t=0}^{T} \delta u \cdot L^*(u^*) \, dt \, dx$$
3.4

Writing the left-hand side of 3.4 explicitly:

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) \, dt \, dx = \int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot \left[\rho \, \delta \ddot{u} - \partial_x (\mu \partial_x \delta u)\right] dt \, dx$$

The goal is to eliminate δu from the differentiations on the right-hand side:

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) dt dx = \int_{x=0}^{L} \rho u^* \delta \dot{u} dx \Big|_{t=0}^{T} - \int_{t=0}^{T} \mu u^* \partial_x \delta u dt \Big|_{x=0}^{L}$$
$$- \int_{x=0}^{L} \int_{t=0}^{T} \left[\rho \dot{u}^* \delta \ddot{u} - \mu \partial_x u^* \partial_x \delta u \right] dt dx$$

3.5

The adjoint operator for the 1D wave equation

The goal is to eliminate δu from the differentiations on the right-hand side:

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) dt dx = \int_{x=0}^{L} \rho u^* \delta \dot{u} dx \Big|_{t=0}^{T} - \int_{t=0}^{T} \mu u^* \partial_x \delta u dt \Big|_{x=0}^{L}$$
$$- \int_{x=0}^{L} \int_{t=0}^{T} \left[\rho \dot{u}^* \delta \dot{u} - \mu \partial_x u^* \partial_x \delta u \right] dt dx$$

One more integration by parts:

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) dt dx = \int_{x=0}^{L} \rho u^* \delta \dot{u} dx |_{t=0}^{T} - \int_{t=0}^{T} \mu u^* \partial_x \delta u dt |_{x=0}^{L}$$
$$- \int_{x=0}^{L} \rho \dot{u}^* \delta u dx |_{t=0}^{T} + \int_{t=0}^{T} \mu \partial_x u^* \delta u dt |_{x=0}^{L}$$
$$+ \int_{x=0}^{L} \int_{t=0}^{T} \delta u \left[\rho \ddot{u}^* - \partial_x (\mu \partial_x u^*) \right] dt dx$$

3.6

The adjoint operator for the 1D wave equation

The goal is to eliminate δu from the differentiations on the right-hand side:

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) dt dx = \int_{x=0}^{L} \rho u^* \delta \dot{u} dx |_{t=0}^{T} - \int_{t=0}^{T} \mu u^* \partial_x \delta u dt |_{x=0}^{L}$$
$$- \int_{x=0}^{L} \int_{t=0}^{T} \left[\rho \dot{u}^* \delta \dot{u} - \mu \partial_x u^* \partial_x \delta u \right] dt dx$$

3.6

One more integration by parts (with boundary & initial conditions accounted for):

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) dt dx = \int_{x=0}^{L} \rho u^* \delta \dot{u} dx |_{t=T}^{t=T} - 0$$
$$- \int_{x=0}^{L} \rho \dot{u}^* \delta u dx |_{t=T}^{t=T} + \int_{t=0}^{T} \mu \partial_x u^* \delta u dt |_{x=0}^{L}$$
$$+ \int_{x=0}^{L} \int_{t=0}^{T} \delta u \left[\rho \ddot{u}^* - \partial_x (\mu \partial_x u^*) \right] dt dx$$

The adjoint operator for the 1D wave equation

One more integration by parts (with boundary & initial conditions accounted for):

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) dt dx = \int_{x=0}^{L} \rho u^* \delta \dot{u} dx |_{t=T}^{t=T} - 0$$
$$- \int_{x=0}^{L} \rho \dot{u}^* \delta u dx |_{t=T}^{t=T} + \int_{t=0}^{T} \mu \partial_x u^* \delta u dt |_{x=0}^{L}$$
$$+ \int_{x=0}^{L} \int_{t=0}^{T} \delta u \left[\rho \ddot{u}^* - \partial_x (\mu \partial_x u^*) \right] dt dx$$

3.8

0

We are done, when we manage to make the boundary terms go away. So, we impose conditions upon the adjoint field u* :

$$u^* |_{t=T} = \dot{u}^* |_{t=T} = 0$$
 terminal condition 3.9
$$\partial_x u^* |_{x=0} = \partial_x u^* |_{x=L} = 0$$
 boundary condition (same as for u) 3.1

The adjoint operator for the 1D wave equation

So, provided that the adjoint field u* satisfies the terminal and boundary conditions

$$u^{*}|_{t=T} = \dot{u}^{*}|_{t=T} = 0 \qquad \text{terminal condition} \qquad 3.9$$
$$\hat{\partial}_{x} u^{*}|_{x=0} = \hat{\partial}_{x} u^{*}|_{x=L} = 0 \qquad \text{boundary condition (same as for u)} \qquad 3.10$$

we are left with

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) dt dx = \int_{x=0}^{L} \int_{t=0}^{T} \delta u \left[\rho \ddot{u}^* - \partial_x (\mu \partial_x u^*) \right] dt dx$$

3.11

What we initially wanted to have is

$$\int_{x=0}^{L} \int_{t=0}^{T} u^* \cdot L(\delta u) \, dt \, dx = \int_{x=0}^{L} \int_{t=0}^{T} \delta u \cdot L^*(u^*) \, dt \, dx$$

The adjoint operator for the 1D wave equation

It follows that the adjoint operator is given by

$$L^*(u^*) = \rho \ddot{u}^* - \partial_x(\mu \partial_x u^*)$$

3.12

This is, fortunately, again a wave equation, meaning that it can be solved with preexisting computer codes.

Summary

The Fréchet derivative of the misfit function:

$$\frac{dX}{dm} = \iint \delta u \cdot f^* \, dt \, d^3 x$$

The Fréchet derivative of the misfit X can be expressed in terms of the regular wave field u and the adjoint field u*:

$$\frac{dX}{dm}\delta m = \iint \left[u^* \cdot \frac{dL(u)}{dm} \delta m \right] dt \, d^3x$$

The adjoint field is governed by the adjoint equation:

 $L^*(u^*) = -f^*$

The adjoint field satisfies terminal conditions:

$$u^*|_{t=T} = \dot{u}^*|_{t=T} = 0$$

Summary

dX

dm

The misfit can be expressed as an integral over time and space:

$$= \iint \delta u \cdot f^* dt d^3 x \qquad f^* = (u - u_0) \delta(x - x^r)$$

The Fréchet derivative of the misfit X can be expressed in terms of the regular wave field u and the adjoint field u*:

$$\frac{dX}{dm}\delta m = \iint \left[u^* \cdot \frac{dL(u)}{dm} \delta m \right] dt \, d^3x$$

1D wave equation

$$\frac{dX}{d\rho}\delta\rho = -\iint \delta\rho \left(\dot{u}^* \cdot \dot{u}\right) dt dx$$

The adjoint field is governed by the adjoint equation:

$$L^{*}(u^{*}) = -f^{*} \qquad \rho \ddot{u}^{*} - \partial_{x}(\mu \partial_{x} u^{*}) = -f^{*} \qquad \text{1D wave equation}$$

The adjoint field satisfies terminal conditions:

$$u^*|_{t=T} = \dot{u}^*|_{t=T} = 0$$

The recipe

1. Solve the forward problem

forward field u synthetic seismograms

The recipe

1. Solve the forward problem

2. Evaluate the misfit X and compute the adjoint force

forward field u synthetic seismograms

The recipe

1. Solve the forward problem

- 2. Evaluate the misfit X and compute the adjoint force
- 3. Solve the adjoint problem

 $t_1 \wedge t_2 \wedge t_3 \wedge t_4 \wedge t_4$

adjoint field u*

forward field u

synthetic seismograms

4. Compute the Fréchet kernels by integrating u and u*

... for instance:
$$K_{\rho} = -\int \dot{u}^* \cdot \dot{u} dt$$

Tape et al., 2007

The recipe

- The interaction of the regular and the adjoint fields generates a primary influence zone.
- First-order scattering from within the primary influence zone affects the measurement.

Fréchet kernel gallery

measurement: cross-correlation time shift

Fréchet kernel gallery

Fréchet kernel gallery

Fréchet kernel gallery

- 1. Storage of the forward field
- 2. Construction of the adjoint source time function
- 3. Fréchet kernels

Storage of the forward field

To compute Fréchet kernels, the regular velocity and strain fields must be stored during the forward simulation.

Storage of the forward field

To compute Fréchet kernels, the regular velocity and strain fields must be stored during the forward simulation.

Construction of the adjoint source (for cross-correlation time shifts)

Luo & Schuster, 1991 Used before in surface wave analysis.

Construction of the adjoint source (for cross-correlation time shifts)

Construction of the adjoint source (for cross-correlation time shifts)

2. compute correlation function

Construction of the adjoint source (for cross-correlation time shifts)

2. compute correlation function

 ΔT = cross-correlation time shift

Construction of the adjoint source (for cross-correlation time shifts)

The corresponding adjoint source is:

Construction of the adjoint source (for cross-correlation time shifts)

The corresponding adjoint source is:

The above equation is an approximation! It holds – paradoxically – only when the observed and synthetic waveforms are shifted in time without being otherwise distorted.

Construction of the adjoint source (for cross-correlation time shifts)

• Step 1: read synthetic seismogram and select the waveform of interest

Construction of the adjoint source (for cross-correlation time shifts)

• Step 2: apply a window function

Construction of the adjoint source (for cross-correlation time shifts)

Step 3: scale and reverse in time

Construction of the adjoint source (for cross-correlation time shifts)

Step 4: write the adjoint source time function and location into the following files:

Construction of the adjoint source (for cross-correlation time shifts)

Step 4: write the adjoint source time function and location into the following files:

theta-, phi- and r-component of the adjoint source

Construction of the adjoint source (for cross-correlation time shifts)

Step 5: run ses3d (main.exe). The output (Fréchet kernels) is then written to the output directory.

and finally: Fréchet kernels

- 1. The adjoint method for seismic source parameters
- 2. Time-reversal imaging of seismic sources

The adjoint method for seismic source parameters

What is the reaction of the seismic wave field to changes in the source parameters?

$$\rho \ddot{u} - \partial_x (\mu \partial_x u) = f \qquad \longrightarrow \qquad u(x,t)$$

$$4.1$$

$$\rho \ddot{u} - \partial_x (\mu \partial_x u) = f + \delta f \qquad \longrightarrow \qquad u(x,t) + \delta u(x,t)$$

$$4.2$$

How does this change in the wave field affect the misfit X ?

$$\frac{d\mathbf{X}}{df}\delta f = ???$$

The adjoint method for seismic source parameters

- With the adjoint method we can answer this question in a straightforward way:
- Simply redefine the wave operator ...

$$\rho \ddot{u} - \partial_x (\mu \partial_x u) = f$$

$$L(u, m) = f \qquad m = (\rho, \mu)$$

... to:

$$\rho \ddot{u} - \partial_x (\mu \partial_x u) - f = 0$$

$$L(u, m) = 0 \qquad m = (\rho, \mu, f)$$

4.4

2.11

Then repeat the previous derivation.

The adjoint method for seismic source parameters

The adjoint equations are exactly the same as before:

The adjoint field is governed by the adjoint equation:

$$L^*(u^*) = -f^*$$

The adjoint field satisfies terminal conditions:

$$u^*|_{t=T} = \dot{u}^*|_{t=T} = 0$$

But the Fréchet derivative (kernel) with respect to the source is much simpler:

$$\frac{dX}{df}\delta f = -\iint u^*(x,t)\cdot\delta f(x,t)\,dt\,d^3x \qquad K_f = -\int u^*(x,t)\,dt \qquad 4.5$$

The forward field is not involved in the Fréchet derivative and thus need not be stored.

The adjoint method for seismic source parameters

Example

Misfit functional:

$$X(m) = \frac{1}{2} \int [u - u_0]^2 dt$$
synthetic waveform observed waveform

Adjoint source:

$$f^* = (u - u_0)\delta(x - x^r)$$

Initial source model:

$$f = 0 \implies u = 0 \implies f^* = -u_0 \delta(x - x^r)$$

4.6

4.7

The adjoint method for seismic source parameters

Example

Adjoint equation (for the 1D case):

$$\rho \ddot{u}^* - \partial_x (\mu \partial_x u^*) = u_0 \,\delta(x - x^r)$$

- The recorded seismograms are re-injected at the source positions and propagated backwards in time.
- And the Fréchet kernel is just the backward propagated field integrated over time:

$$K_f = -\int u^*(x,t) \, dt \tag{4.10}$$