
PART  II 
 

FRÉCHET KERNELS AND THE ADJOINT METHOD 

1. Setup of the tomographic problem: Why gradients? 

2. The adjoint method 

3. Practical 

4. Special topics (source imaging and time reversal) 



Setup of the tomographic problem: 

  

Why gradients? 



1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 

Problem setup 
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Find an Earth model m such that a suitably defined misfit X is minimal. 

The number of model parameters and the numerical cost of the forward problem 
prevent the application of probabilistic methods. 

The minimisation proceeds iteratively: 
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The family of gradient methods: 

• method of steepst descent: 

• conjugate-gradient methods 

• Newton and Newton-like methods 

• variable-metric methods 

• … 
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Problem setup 

1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 
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Problem setup 

1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 
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m2 m3 m4 … 

Iteratively approach the 

minimum misfit by following the 

local descent directions. 

Problem setup 

1. Start from initial Earth model  

2. Update according to                                       with 

step length descent direction 
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The full gradient – with all its components - is needed in each iteration. 

The most straightforward approach: approximate the gradient by finite-differences: 

 

 

 

 

Example with 500,000 model parameters: 

 

 500,001 forward simulations  

          x 0.5 h per simulation 

          x 126 processors 

          x 50 earthquakes 

          x 4 simulations per conjugate gradient iteration 

          x 10 conjugate gradient iterations 

 6.3e10 cpu hours ≈ 720,000 cpu years 

 

Problem setup 
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Problem setup 

SOLUTIONS: 

Automatic differentiation (AD, www.autodiff.org) 
 
- Differentiation of computer programmes 
- Automatic but inefficient because ignorant about physics 

 
Adjoint method 
 
- Developed in optimal control theory (J.-L- Lions, 1960s) 
- Express gradients in terms of forward and adjoint fields 
- Can be a bit tedious, but is full of interesting physics. 

http://www.autodiff.org/


The adjoint method 

1. Prelude: Misfits and Fréchet derivatives 

2. The adjoint trick 

3. Examples 

4. The adjoint wave equation 



The adjoint method 

Prelude I: Fréchet and classical derivatives 

The adjoint method can be derived in many different ways: 
 
- Born approximation (e.g. Tarantola) 
- Lagrange multipliers (e.g. Liu & Tromp) 
- Data assimilation (e.g. Chen) 
- Operator approach 

elegant and structured 
very general 
leads to simple recipes 
 
requires a bit more mathematical machinery 
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The adjoint method 

Prelude I: Fréchet and classical derivatives 

The Earth model m(x) is a continuously defined function. 
 
Examples: ρ(x), vp(x), vs(x), Q(x), … . 
 
The Fréchet derivative of the misfit X(m) is the infinitesimal change of X(m) as we 
pass from Earth model m(x) to m(x)+δm(x): 

2.1 



The adjoint method 

The Earth model m(x) is a continuously defined function. 
 
Examples: ρ(x), vp(x), vs(x), Q(x), … . 
 
The Fréchet derivative of the misfit X(m) is the infinitesimal change of X(m) as we 
pass from Earth model m(x) to m(x)+δm(x): 

For practical reasons, the continuous Earth model is parameterised in terms of a 
finite number of basis functions bi(x): 
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Prelude I: Fréchet and classical derivatives 
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The adjoint method 

The classical partial derivatives with respect to the model parameters mi can be 
expressed in terms of the Fréchet derivative: 
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The misfit X is then a function of the discrete model parameters mi: 

2.3 
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Prelude I: Fréchet and classical derivatives 



The adjoint method 
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The classical partial derivative with respect to the discrete model parameter mi is 
equal to the Fréchet derivative in the direction of the basis function bi(x). 

We need to find an efficient way to compute the Fréchet derivative of X for any 
direction (Earth model perturbation). 

Prelude I: Fréchet and classical derivatives 
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The adjoint method 

Prelude II:  Misfit functionals 

The classical (though not very useful) misfit functional in full waveform inversion is: 

synthetic waveform receiver observed waveform 
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This can be rewritten as an integral over both time and space: 
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The Fréchet derivative of the misfit functional is then: 
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The adjoint method 

Prelude II:  Misfit functionals 

The Fréchet derivative of the misfit functional is then: 
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In fact, the Fréchet derivative of any misfit functional can be written in this form: 
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But f* can be anything, depending on the misfit you choose. 



The practical difficulty lies in the presence of the Fréchet derivative of the wave field 
u, that we need to know for any model perturbation δm. 

The adjoint method 

Fréchet derivative of the misfit functional:  Problem statement 

The adjoint method is a trick that allows us to eliminiate δu from equation 2.10. 

The price to pay is the solution of another differential equation – the adjoint equation. 
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The adjoint method 

The trick 

To keep the treatment as general as possible, we write the wave equation in a 
condensed form: 
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For the special case of the 1D wave equation: 
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But L could represent any other wave equation (e.g. 3D anisotropic, visco-elastic, 
…) or even any other PDE. 

Compute the Fréchet derivative of L in the direction δm: 
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The adjoint method 

The trick 

We can simplify the first term when L is linear in u (which is the case for the wave 
equation): 
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Then going back to equation 2.13: 
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The adjoint method 

The trick 

Now we multiply equation 2.14 with an arbitrary (but differentiable) test function 
u*(x,t), and integrate over time and space. 
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Adding equation 2.15 to the Fréchet derivative of the misfit 

gives: 
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The adjoint method 

The trick 

We can eliminate δu from equation 2.16 with the help of adjoint of L: 
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Finding the adjoints is the actual challenge, but if we manage to do so, we can 
transform equation 2.16 to: 
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Find u* and L* such that: 



The adjoint method 

The trick 

We can eliminate δu when the adjoint field u* satisfies the adjoint equation: 
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Computing the Fréchet derivative of the misfit X then becomes quite easy: 
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Everything in equation 2.21 is known. 
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The adjoint method 

Examples 

The Fréchet derivative of the misfit X: 
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The adjoint method 

Examples 

The Fréchet derivative of the misfit X: 
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Derivative of the wave operator: 
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Fréchet derivative of X: 
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The adjoint method 

Examples 

The Fréchet derivative of the misfit X: 
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Derivative of the wave operator: 
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Fréchet derivatives of X: 
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The adjoint method 

Examples 

Fréchet derivatives of X: 
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2.25‘‘ Fréchet kernel w.r.t. density: 
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2.26‘ 

Fréchet kernels are the volumetric densities of the Fréchet derivatives. 

Fréchet kernel w.r.t. the shear modulus: 



The adjoint method 

Examples 

For the 3D elastic wave equation: 

… and with a different parameterisation: 
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2.28 

Fréchet derivatives depend on the parameterisation!!! 
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The adjoint method 

The adjoint operator for the 1D wave equation 

1D wave equation: )()( uuuL xx    3.1 

We need to find the adjoint field u* and the adjoint operator L* such 
that the following equation holds for any δu that satisfies the boundary 
and initial conditions: 

with initial conditions: 
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and boundary conditions: 

0|| 0   Lxxxx uu

3.2 

3.3 

3.4 



   
 



 

 

L

x

T

t

xx

L

x

T

t

dxdtuuudxdtuLu
0 00 0

)()(  

  

 

 















 







L

x

T

t

xx

L

xx

T

t

T

t

L

x

L

x

T

t

dxdtuuuu

dtuudxuudxdtuLu

0 0

0

0

0

00 0

||)(









The adjoint method 

The adjoint operator for the 1D wave equation 
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Find u* and L* such that the following equation holds for any δu: 

3.4 

Writing the left-hand side of 3.4 explicitly: 

3.5 

The goal is to eliminate δu from the differentiations on the right-hand side: 
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The adjoint method 

The adjoint operator for the 1D wave equation 

The goal is to eliminate δu from the differentiations on the right-hand side: 

3.6 

One more integration by parts: 
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The adjoint method 

The adjoint operator for the 1D wave equation 

The goal is to eliminate δu from the differentiations on the right-hand side: 

3.6 

One more integration by parts  (with boundary & initial conditions accounted for): 
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The adjoint method 

The adjoint operator for the 1D wave equation 

One more integration by parts  (with boundary & initial conditions accounted for): 
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We are done, when we manage to make the boundary terms go away. So, we impose 
conditions upon the adjoint field u* : 
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3.9 

3.10 

terminal condition 

boundary condition (same as for u) 



The adjoint method 

The adjoint operator for the 1D wave equation 

So, provided that the adjoint field u* satisfies the terminal and boundary conditions 
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3.10 

terminal condition 

boundary condition (same as for u) 

we are left with 
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What we initially wanted to have is 
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The adjoint method 

The adjoint operator for the 1D wave equation 

It follows that the adjoint operator is given by 

)()(   uuuL xx  
3.12 

This is, fortunately, again a wave equation, meaning that it can be solved with pre-
existing computer codes. 



The adjoint method 

Summary 

The Fréchet derivative of the misfit X can be expressed in terms of the regular wave 
field u and the adjoint field u*: 

 









  xddtm
dm

udL
um

dm

d 3)(


The adjoint field is governed by the adjoint equation: 

*** )( fuL 

The adjoint field satisfies terminal conditions: 

0||  







TtTt uu 

 


xddtfu
dm

d 3*

The Fréchet derivative of the misfit function: 



The adjoint method 

Summary 

The Fréchet derivative of the misfit X can be expressed in terms of the regular wave 
field u and the adjoint field u*: 

The adjoint field is governed by the adjoint equation: 

*** )( fuL 

The adjoint field satisfies terminal conditions: 

0||  







TtTt uu 

 
  dxdtuu

d

d
)( 



1D wave equation 

*)( fuu xx     1D wave equation 

The misfit can be expressed as an integral over time and space: 

L2 norm 
  )(0

* rxxuuf   


xddtfu
dm

d 3*

 









  xddtm
dm

udL
um

dm

d 3)(

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Tape et al., 2007 

1. Solve the forward problem 

t1                                     t2                         t3                         t4 

forward field u 

synthetic seismograms 

The adjoint method 

The recipe 

2. Evaluate the misfit X and compute the adjoint force  

 
3. Solve the adjoint problem 

t1                                     t2                         t3                         t4 

adjoint field u* 

4. Compute the Fréchet kernels by integrating u and u* 

   dtuuK 


… for instance: 



The adjoint method 

The recipe 

The interaction of the regular and the adjoint fields generates a primary influence zone. 

First-order scattering from within the primary influence zone affects the measurement. 



measurement: cross-correlation time shift 

The adjoint method 

Fréchet kernel gallery 



The adjoint method 

Fréchet kernel gallery 



red: Δvp>0 

synthetics appear earlier 

time shift smaller 

blue: Δvp>0 

synthetics appear later 

time shift larger 

data 

synthetic 

The adjoint method 

Fréchet kernel gallery 



The adjoint method 

Fréchet kernel gallery 



The adjoint method 

Fréchet kernel gallery 



Practical 

1. Storage of the forward field 

2. Construction of the adjoint source time function 

3. Fréchet kernels 



Practical 

Storage of the forward field 

store velocity and strain field (1=yes, 0=no) every samp_ad (=10) 
time steps in the directory below (../INTERMEDIATE) 
 
Needed for the computation of sensitivity kernels. 

To compute Fréchet kernels, the regular velocity and strain fields must be stored during 
the forward simulation. 

Par file 



Practical 

Storage of the forward field 

adjoint flag = 2: read the stored forward 
fields and compute Fréchet kernels 

To compute Fréchet kernels, the regular velocity and strain fields must be stored during 
the forward simulation. 

Par file 

2 



1. select and isolate a waveform 

Luo & Schuster, 1991 

Used before in surface wave analysis. 

Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 



1. select and isolate a waveform 

Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 



2. compute correlation function 

 
τ

τττ )d(u)u(tC(t) 0

1. select and isolate a waveform 

Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 



1. select and isolate a waveform 

2. compute correlation function 

ΔT = cross-correlation time shift 

2Tχ 

Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 



Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 

The corresponding adjoint source is: 

)(
||),(||

),(
),(

2

* r

r

r

xx
xtu

xtu
xtf  





acts at the 
receiver position amplitude normalisation  

→  
traveltime kernels are 

independent of the wave 
amplitude 



Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 

The corresponding adjoint source is: 

)(
||),(||

),(
),(

2

* r

r

r

xx
xtu

xtu
xtf  





acts at the 
receiver position amplitude normalisation  

→  
traveltime kernels are 

independent of the wave 
amplitude 

The above equation is an approximation! It holds – paradoxically – only when 
the observed and synthetic waveforms are shifted in time without being 
otherwise distorted. 



Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 

Step 1: read synthetic seismogram and select the waveform of interest 



Practical 

Construction of the adjoint source  (for cross-correlation time shifts) 

Step 2: apply a window function 



Practical 

Step 3: scale and reverse in time 

Construction of the adjoint source  (for cross-correlation time shifts) 



Practical 

Step 4: write the adjoint source time function and location into the following files: 

Construction of the adjoint source  (for cross-correlation time shifts) 

ad_srcfile 

number of adjoint sources 

colatitude (90°), longitude (12.5°), depth (1000 m) 



Practical 

Step 4: write the adjoint source time function and location into the following files: 

Construction of the adjoint source  (for cross-correlation time shifts) 

theta-, phi- and r-component of the adjoint source 

ad_src_1, ad_src_2, … 



Practical 

Step 5: run ses3d (main.exe). The output (Fréchet kernels) is then written to the 
output directory. 

Construction of the adjoint source  (for cross-correlation time shifts) 



A A‘ 

A 

A‘ 

B‘ 

B 

B‘ B 

Practical 

and finally: Fréchet kernels 



Special topics 

1. The adjoint method for seismic source parameters 

2. Time-reversal imaging of seismic sources 



Special topics 

The adjoint method for seismic source parameters 

What is the reaction of the seismic wave field to changes in the source parameters? 

fuu xx  )(  ),( txu

ffuu xx   )( ),(),( txutxu 

4.1 

4.2 

How does this change in the wave field affect the misfit X ? 

???


f
df

d
 4.3 



Special topics 

The adjoint method for seismic source parameters 

With the adjoint method we can answer this question in a straightforward way: 

Simply redefine the wave operator … 

fuu xx  )( 

fmuL ),( ),( m 2.11 

… to: 

0)(  fuu xx  

0),( muL ),,( fm  4.4 

Then repeat the previous derivation. 



Special topics 

The adjoint method for seismic source parameters 

The adjoint equations are exactly the same as before: 

The adjoint field is governed by the adjoint equation: 

*** )( fuL 

The adjoint field satisfies terminal conditions: 

0||  







TtTt uu 

But the Fréchet derivative (kernel) with respect to the source is much 
simpler: 

 


xddttxftxuf
df

d 3* ),(),( 

The forward field is not involved in the Fréchet derivative and thus need not be stored. 

4.5  dttxuK f ),(*



Special topics 

The adjoint method for seismic source parameters 

Misfit functional: 

   dtuum
2

0
2

1
)(

synthetic waveform observed waveform 

4.6 

Example 

Initial source model: 

)(00 0

rxxufuf    4.8 

  )(0

* rxxuuf  

Adjoint source: 

4.7 



Special topics 

The adjoint method for seismic source parameters 

Example 

And the Fréchet kernel is just the backward propagated field integrated over time: 

 dttxuK f ),(*

Adjoint equation (for the 1D case): 

)()( 0

** r

xx xxuuu   

The recorded seismograms are re-injected at the source positions and propagated 
backwards in time. 

4.9 

4.10 


