
PART  III 
 

ITERATIVE SOLUTION OF THE TOMOGRAPHIC INVERSE PROBLEM 

1. French cheese, non-linearity and the multi-scale approach 

2. Misfit functionals 

3. Towards quantitative resolution analysis 
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The Camembert experiment (Gauthier, Virieux & Tarantola, 1986) 

Synthetic full waveform inversion experiment. 

The misfit was the most obvious L2 difference: 

The goal was to recover an input model with the shape of a Camembert. 
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The Camembert experiment (Gauthier, Virieux & Tarantola, 1986) 

Synthetic full waveform inversion experiment. 

The misfit was the most obvious L2 difference: 

The goal was to recover an input model with the shape of a Camembert. 

input model 
inversion result 

after 5 iterations 
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The Camembert experiment (Gauthier, Virieux & Tarantola, 1986) 

input model 
inversion result 

after 5 iterations 

The inversion was trapped in a local minimum of the misfit function. 

Seismic waveforms depend non-linearly on the structure of the Earth. 

This can result in the presence of multiple local minima of the misfit. 



1. Start from initial Earth model  

2. Update according to 

step length descent direction 
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1. Start from initial Earth model  

2. Update according to 

step length descent direction 
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Iteratively approach the 

minimum misfit by following the 

local descent directions. 

Non-linearity and multiple minima 
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Gradient methods are local. 

Convergence to the global minimum relies on a good initial model. 

Good initial model: e.g. long-wavelength model from ray tomography. 

Bleibinhaus et al., 2007 

Non-linearity and multiple minima 
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Bleibinhaus et al., 2007 

Gradient methods are local. 

Convergence to the global minimum relies on a good initial model. 

Good initial model: e.g. long-wavelength model from ray tomography. 

Non-linearity and multiple minima 



Sufficiently good initial models are often not available. 

 

The multi-scale approach is an empirical strategy that  

helps to overcome this problem 

The multi-scale approach 



long-period data 

 

 → long-wavelength structure 

The multi-scale approach 



shorter-period data 

 

 → shorter-wavelength structure 

The multi-scale approach 



short-period data 

 

 → short-wavelength structure 

The multi-scale approach 



Bleibinhaus et al., 2007 

The multi-scale approach 



Misfit functionals 



Misfit functionals: Principal Desiderata 

A misfit functional suitable for waveform tomography should: 
 
1) extract as much information as possible from seismic waveforms 
 
2) be quasi-linearly related to Earth structure (tame non-linearity) 



Misfit functionals: Principal Desiderata 

A misfit functional suitable for waveform tomography should: 
 
1) extract as much information as possible from seismic waveforms 
 
2) be quasi-linearly related to Earth structure (tame non-linearity) 

„P.S.: Do you use amplitude information? If so, be 

really careful with the temporary data. I am prepared 

to bet that you can have amplitude errors of a factor 

of up to 10 … 

 

This type of caution even applies for many permanent 

observatory stations. I could show you an interesting 

figure on that subject, which shows that approximately 

40% of permanent broad-band stations have amplitude 

errors >10% …“ 



Misfit functionals: Principal Desiderata 

A misfit functional suitable for waveform tomography should: 
 
1) extract as much information as possible from seismic waveforms 
 
2) be quasi-linearly related to Earth structure (tame non-linearity) 
 
3) be independent of absolute amplitudes 



Synthetic experiment to study the detectability of mantle plumes. 

 

Plume model (d=500km, -5% P wave speed, -10% S wav speed). 

 

Idealistic source-receiver geometry. 

 

Measurement of cross-correlation time shifts in 30 s P waves 

Design of misfit functionals 

Example 1: Hunting for plumes  in the mantle (Florian Rickers) 



Original plume   Traveltime recovered plume 

Misfit reduction after 7 conjugate-gradient iterations: 95 % 

 

Traveltimes are essentially explained. 

 

The plume remains diffuse and is not visible below 600 km. 

Design of misfit functionals 

Example 1: Hunting for plumes  in the mantle (Florian Rickers) 
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Design of misfit functionals 

Example 1: Hunting for plumes  in the mantle (Florian Rickers) 
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     Traveltime differences decay  
     rapidly due to wavefront healing. 
 
     Deeper parts of the plume are not  
     detectable by cross-correlation. 

Design of misfit functionals 

Example 1: Hunting for plumes  in the mantle (Florian Rickers) 



Plume acts as a scatterer. 

 

Away from the direct ray 
path, plume information 
arrives in the coda of the 
P-wave. 

 

This information is not 
accessible by cross-
correlation. 

 

 primary wave field 

scattered waves 

Design of misfit functionals 

Example 1: Hunting for plumes  in the mantle (Florian Rickers) 



Considers the complete time series, including the scattered waves. 

 

All the „wiggles“ are automatically weighted equally. 

 

Independent of absolute amplitudes. 
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Alternative measurement: instantaneous phase differences of the complete seismogram 
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instantaneous phase misfit: 

Advantages: 

Design of misfit functionals 

Example 1: Hunting for plumes  in the mantle (Florian Rickers) 



Instantaneous phase inversion for the synthetic plume. 

 

Use the P wave train until the arrival of the S wave. 

 

Misfit reduction of 90 % after 9 iterations. 

 

Much sharper image of the plume (… but still not to great depth). 

Cross correlation traveltime Instantaneous phase 

Design of misfit functionals 

Example 1: Hunting for plumes  in the mantle (Florian Rickers) 



Time-frequency misfits 

phase differences as functions of time and frequency 

 

 

 

Design of misfit functionals 

Example 2: Time-frequency misfits 



 

 

• quasi-linearly related to Earth structure 

 improves convergence  

• independent of amplitudes 

 reliably measurable, deep structure information 

• applicable to complex waveforms 

 interfering waves, unidentifyable waves 

• continuous in frequency 

no discrete frequency bands 

 

Time-frequency misfits 

phase differences as functions of time and frequency 

 

 

 

Design of misfit functionals 

Example 2: Time-frequency misfits 



isotropic S wave speed 

Design of misfit functionals 

Example 2: Time-frequency misfits 



Towards quantitative resolution analysis 



Southern California  Tape et al. (2009,2010) 

Australasia Fichtner et al. (2009,2010) 

How can we quantify the trustworthyness of FWI images ? 

Arguments typically involve: 

 (1) visual analysis 

 (2) synthetic inversions 

Are FWI images really any better ? 

Is FWI worth the effort ? 

Resolution analysis 



Quadratic approximation of the misfit functional 

mHmmmm
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misfit functional optimal Earth model Hessian at mopt 

Complications: non-linearity, multiple minima, finite computational resources, … 

The Hessian H: 

 (1) local geometry of the misfit surface 

 (2) resolution and trade-offs 

 (3) H = inverse posterior covariance 

Resolution analysis 



Efficient computation of H·m via an extension of the adjoint method 

 (1) 2 forward simulations 

 (2) 2 adjoint simulations (time-reversed) 

Resolution analysis 



Efficient computation of H·m via an extension of the adjoint method 

 (1) 2 forward simulations 

 (2) 2 adjoint simulations (time-reversed) 

Example: 25 s Love wave 

  finite-frequency traveltime 

Fréchet kernel 

Fichtner & Trampert, Hessian kernels of seismic data functionals. GJI, submitted. 

Resolution analysis 
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m = vs perturbation in pixel k 

Resolution analysis 



Efficient computation of H·m via an extension of the adjoint method 

 (1) 2 forward simulations 

 (2) 2 adjoint simulations (time-reversed) 

Example: 25 s Love wave 

  finite-frequency traveltime 

Hessian column 
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F: approximate Hessian (first-order scattering) 

S: second-order scattering 
Fichtner & Trampert, Hessian kernels of seismic data functionals. GJI, submitted. 

m = vs perturbation in pixel k 

column k 

Resolution analysis 



EU-MOD.ISO.3 

Long-wavelength FWI image of Europe: EU-MOD.ISO.3 

Data: ≈ 3000 waveforms 

 dominant period: 100 s 

3 iterations 

Resolution analysis 



Resolution analysis 

Example: A Hessian column (kernel) for northern Germany 

Ideally, we would like to have such a Hessian kernel for each point in the model. 
 
This would be a computationally expensive exercise, but … 



H·exp(ik·x) = Fourier transform of the H-columns 

approximate H from a small number of wave number vectors k 

estimate width of the influence length l in different directions 

pixel j 

effect on pixel j 

no effect on pixel j 

lx 

Resolution analysis 



H·exp(ik·x) = Fourier transform of the H-columns 

approximate H from a small number of wave number vectors k 

estimate width of the influence length l in different directions 

Resolution analysis 



good estimate of H from a hand full of forward and adjoint simulations 

H·exp(ik·x) = Fourier transform of the H-columns 

approximate H from a small number of wave number vectors k 

estimate width of the influence length l in different directions 

Resolution analysis 



1. extension of the adjoint method to compute H·m 

 

2. H·m = superposition of approximate Hessian and second-order scattering 

 

 

 

3. resolution and influence region of geologic structures (e.g. Iceland plume) 

 

4. trade-offs between parameters (e.g. vs, vp, r) 

 

5. spectral estimation of the Hessian through Fourier transforms 

 

6. continuous distribution of the influence length 

 

 

First step towards quantitative resolution analysis in full waveform inversion. 

Resolution analysis 
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