

PART III

ITERATIVE SOLUTION OF THE TOMOGRAPHIC INVERSE PROBLEM

- 1. French cheese, non-linearity and the multi-scale approach
- 2. Misfit functionals
- 3. Towards quantitative resolution analysis

French cheese,

non-linearity

and the

multi-scale approach

The Camembert experiment (Gauthier, Virieux & Tarantola, 1986)

- Synthetic full waveform inversion experiment.
- The misfit was the most obvious L₂ difference:

The goal was to recover an input model with the shape of a Camembert.

The Camembert experiment (Gauthier, Virieux & Tarantola, 1986)

- Synthetic full waveform inversion experiment.
- The misfit was the most obvious L₂ difference:

The goal was to recover an input model with the shape of a Camembert.

The Camembert experiment (Gauthier, Virieux & Tarantola, 1986)

The inversion was trapped in a local minimum of the misfit function.

- Seismic waveforms depend non-linearly on the structure of the Earth.
- This can result in the presence of multiple local minima of the misfit.

- 1. Start from initial Earth model \mathbf{m}_0

- 1. Start from initial Earth model m_0

- 1. Start from initial Earth model \mathbf{m}_0

- 1. Start from initial Earth model \mathbf{m}_0

 $\mathbf{m}_0 \, \mathbf{m}_1 \, \mathbf{m}_2 \, \mathbf{m}_3 \, \dots$

- Gradient methods are local.
- Convergence to the global minimum relies on a good initial model.
- Good initial model: e.g. long-wavelength model from ray tomography.

- Gradient methods are local.
- Convergence to the global minimum relies on a good initial model.
- Good initial model: e.g. long-wavelength model from ray tomography.

Bleibinhaus et al., 2007

Sufficiently good initial models are often not available.

The multi-scale approach is an empirical strategy that helps to overcome this problem

long-period data

 \rightarrow long-wavelength structure

shorter-period data

 \rightarrow shorter-wavelength structure

short-period data

 \rightarrow short-wavelength structure

Bleibinhaus et al., 2007

Misfit functionals

A misfit functional suitable for waveform tomography should:

- 1) extract as much information as possible from seismic waveforms
- 2) be quasi-linearly related to Earth structure (tame non-linearity)

A misfit functional suitable for waveform tomography should:

1) extract as much information as possible from seismic waveforms

2) be quasi-linearly related to Earth structure (tame non-linearity)

"P.S.: Do you use amplitude information? If so, be really careful with the temporary data. I am prepared to bet that you can have amplitude errors of a factor of up to 10 ...

This type of caution even applies for many permanent observatory stations. I could show you an interesting figure on that subject, which shows that approximately 40% of permanent broad-band stations have amplitude errors >10% ..."

A misfit functional suitable for waveform tomography should:

- 1) extract as much information as possible from seismic waveforms
- 2) be quasi-linearly related to Earth structure (tame non-linearity)
- 3) be independent of absolute amplitudes

- Synthetic experiment to study the detectability of mantle plumes.
- Plume model (d=500km, -5% P wave speed, -10% S wav speed).
- Idealistic source-receiver geometry.
- Measurement of cross-correlation time shifts in 30 s P waves

Example 1: Hunting for plumes in the mantle (Florian Rickers)

- Misfit reduction after 7 conjugate-gradient iterations: 95 %
- Traveltimes are essentially explained.
- The plume remains diffuse and is not visible below 600 km.

Original plume

Traveltime recovered plume

Example 1: Hunting for plumes in the mantle (Florian Rickers)

Alternative measurement:

instantaneous phase differences of the complete seismogram

analytic signal:

$$\widetilde{f}(t) = f(t) + i H f(t)$$

instantaneous phase:

$$\Phi(t) = \arctan \frac{\operatorname{Im} \widetilde{f}}{\operatorname{Re} \widetilde{f}}$$

• instantaneous phase misfit:
$$\chi = \sum_{i=1}^{N_r} \int \left[\Phi_i^0(t) - \Phi_i(t) \right]^2 dt$$

Advantages:

- Considers the complete time series, including the scattered waves.
- All the "wiggles" are automatically weighted equally.
- Independent of absolute amplitudes.

Example 1: Hunting for plumes in the mantle (Florian Rickers)

- Instantaneous phase inversion for the synthetic plume.
- Use the P wave train until the arrival of the S wave.
- Misfit reduction of 90 % after 9 iterations.
- Much sharper image of the plume (... but still not to great depth).

Cross correlation traveltime

Instantaneous phase

Example 2: Time-frequency misfits

Time-frequency misfits

phase differences as functions of time and frequency

Example 2: Time-frequency misfits

Time-frequency misfits

phase differences as functions of time and frequency

quasi-linearly related to Earth structure

improves convergence

independent of amplitudes

reliably measurable, deep structure information

applicable to complex waveforms

interfering waves, unidentifyable waves

continuous in frequency

no discrete frequency bands

Example 2: Time-frequency misfits

isotropic S wave speed

 $\delta eta_{iso} / eta_{iso}$ [%]

Towards quantitative resolution analysis

How can we quantify the trustworthyness of FWI images ?

• Arguments typically involve:

- (1) visual analysis
- (2) synthetic inversions

Are FWI images really any better ?

Is FWI worth the effort ?

Complications: non-linearity, multiple minima, finite computational resources, …

Quadratic approximation of the misfit functional

- (1) local geometry of the misfit surface
- (2) resolution and trade-offs
- (3) H = inverse posterior covariance

► Efficient computation of H·δm via an extension of the adjoint method

- (1) 2 forward simulations
- (2) 2 adjoint simulations (time-reversed)

Efficient computation of H·ôm via an extension of the adjoint method

- (1) 2 forward simulations
- (2) 2 adjoint simulations (time-reversed)

Example: 25 s Love wave

finite-frequency traveltime

Fichtner & Trampert, Hessian kernels of seismic data functionals. GJI, submitted.

Efficient computation of H·ôm via an extension of the adjoint method

- (1) 2 forward simulations
- (2) 2 adjoint simulations (time-reversed)

Example: 25 s Love wave

finite-frequency traveltime

 $\delta \mathbf{m} = \mathbf{v}_{s}$ perturbation in pixel k

Fichtner & Trampert, Hessian kernels of seismic data functionals. GJI, submitted.

Efficient computation of H·ôm via an extension of the adjoint method

- (1) 2 forward simulations
- (2) 2 adjoint simulations (time-reversed)

Example: 25 s Love wave

finite-frequency traveltime

F: approximate Hessian (first-order scattering)

S: second-order scattering

Fichtner & Trampert, Hessian kernels of seismic data functionals. GJI, submitted.

- Long-wavelength FWI image of Europe: <u>EU-MOD.ISO.3</u>
- Data: ≈ 3000 waveforms

dominant period: 100 s

3 iterations

Example: A Hessian column (kernel) for northern Germany

Ideally, we would like to have such a Hessian kernel for each point in the model.

This would be a computationally expensive exercise, but ...

- H·exp(ik·x) = Fourier transform of the H-columns
- approximate H from a small number of wave number vectors k

estimate width of the <u>influence length ℓ </u> in different directions

H·exp(ik·x) = Fourier transform of the H-columns

approximate H from a small number of wave number vectors k

estimate width of the influence length ℓ in different directions

H·exp(ik·x) = Fourier transform of the H-columns

approximate H from a small number of wave number vectors k

estimate width of the influence length ℓ in different directions

good estimate of H from a hand full of forward and adjoint simulations

- 1. extension of the adjoint method to compute $H \cdot \delta m$
- **2.** $H \cdot \delta m$ = superposition of approximate Hessian and second-order scattering

- 4. trade-offs between parameters (e.g. v_s , v_p , ρ)
- 5. spectral estimation of the Hessian through Fourier transforms
- 6. continuous distribution of the influence length

First step towards quantitative resolution analysis in full waveform inversion.

Lorentz Center Workshop on

Uncertainty Analysis in Geophysical Inverse Problems

7 – 11 November 2011 Leiden, The Netherlands

