Seismic Source Theory: forward and inversion

Lecture 1: Torsten Dahm, University of Hamburg

Lecture 2: Simone Cesca, University of Hamburg

2nd Winterschool Sudelfeld, 11-16 March 2012, Sudelfeld / Bayrischzell

Content

- 1. Forward problem: basic equations and terms
 - Green functions
 - near and far field representations
 - moment tensor
- 2. Physics of rupture
 - variation of rupture and slip
 - approximate model (Eikonal source model)
- 3. Representation of extended sources
 - frequency and time domain directivity
 - how to resolve higher order terms

Green's mill in Nottingham

AN ESSAY

ON THE

APPLICATION

MATHEMATICAL ANALYSIS TO THE THEORIES OF ELECTRICITY AND MAGNETISM.

BY GEORGE GREEN.

(1793 - 1948)

Auttingham ; printed for the author, by t. wheelhouse.

SOLD BY HAMILTON, ADAMS & Co. 33, PATERNOSTER ROW; LONGMAN & Co.; AND W. JOY, LONDON; J. DEIGHTON, CAMBRIDGE;

AND S. BENNETT, H. BARNETT, AND W. DEARDEN, NOTTINGHAM.

1828,

Green's theorem

~

.

1. Potential fields φ and G fulfill Poisson's equation

uation
$$abla^2 \phi = f \,\,and\,\,
abla^2 G = \delta(r).$$

source terms

2. Apply chain rule for terms like

$$\nabla \cdot (\phi \nabla G) = \phi \nabla \cdot \nabla G + (\nabla \phi) (\nabla G)$$
$$\nabla \cdot (G \nabla \phi) = G \nabla \cdot \nabla \phi + (\nabla \phi) (\nabla G)$$

3. Form difference

$$\int_{V} \phi \nabla \cdot \nabla G - G \nabla \cdot \nabla \phi \, dV = \int_{V} \nabla \cdot (\phi \nabla G) - \nabla \cdot (G \nabla \phi) \, dV = \int_{A} (\phi \nabla G - G \nabla \phi) \, \hat{\mathbf{n}} dA$$

gives representation of field variable ϕ at x as

$$\phi(\mathbf{x}) = \int_{V} f(\boldsymbol{\xi}) G(\mathbf{x}, \boldsymbol{\xi}) \, dV + \int_{A} (\phi(\boldsymbol{\xi}) \nabla|_{\boldsymbol{\xi}} G(\mathbf{x}, \boldsymbol{\xi}) - G(\mathbf{x}, \boldsymbol{\xi}) \nabla|_{\boldsymbol{\xi}} \phi(\boldsymbol{\xi})) \cdot d\mathbf{A}(\boldsymbol{\xi}).$$

Application I (V infinite):

⇒ Green function representation

$$\phi(\mathbf{x}) = \int\limits_V f(\boldsymbol{\xi}) G(\mathbf{x}, \boldsymbol{\xi}) \, dV$$

Application II (f zero):

⇒ Boundary element representation

Betti's theorem: "Green theorem for time dependent elasticity"

Application I (displacement and traction vanish on A): force vector representation

$$u_i(\mathbf{x},t) = \int_V f_j(\boldsymbol{\xi}) * G_i^j(\mathbf{x};\boldsymbol{\xi}) \, dV = \int_V \int_{-\infty}^t f_j(\boldsymbol{\xi},\tau) \, G_i^j(\mathbf{x},t;\boldsymbol{\xi},\tau) \, d\tau \, dV \, .$$

Example: Static point force representation (Somigliana solution)

But: internal sources (earthquakes) cannot be represented by single forces!

Internal point sources: GF expansion and moment tensor

Taylor's series expansion around centroid ξ_0 :

$$G_i^j(\boldsymbol{x}; \boldsymbol{\xi}) \approx G_i^j(\boldsymbol{x}; \boldsymbol{\xi_0}) + \frac{\partial}{\partial \xi_k} G_i^j(\boldsymbol{x}; \boldsymbol{\xi})|_{\xi_0} \, \delta \xi_k -$$
 where $d\xi_k = (\boldsymbol{\xi} - \boldsymbol{\xi_0})_k$

gives

"internal source" at centroid!

$$u_{i}(\mathbf{x}) = G_{i}^{j} * \int_{V} f_{j} dV + G_{i,k}^{j} * \int_{V} f_{j} \delta\xi_{k} dV + G_{i,kl}^{j} * \int_{V} \xi_{i} \delta\xi_{k} \delta\xi_{l} dV + \dots$$
$$= G_{i}^{j} * M_{j} + G_{i,k}^{j} * M_{jk} + G_{i,kl}^{j} * M_{jkl} + \dots,$$

with generalized moment

$$M_{jk_1...k_l} = \int_V (\xi_{k_1} - \xi_{0k_1})(\xi_{k_2} - \xi_{0k_2})...(\xi_{k_l} - \xi_{0k_l})f_j(\xi)dV$$

Moment tensor; generalized force couples

Moment tensor density *m* of dislocation source

$$u_n(\mathbf{x},t) = \int_A m_{pq}(\boldsymbol{\xi},t) \star G_{n,q}^p(\mathbf{x},\boldsymbol{\xi},t) \, dA$$

$$\begin{array}{ll} m_{pq}(\boldsymbol{\xi},t) &= & \mathcal{N}\left(\hat{n}_p \Delta u_q(\boldsymbol{\xi},t) + \hat{n}_q \Delta u_p(\boldsymbol{\xi},t)\right) \\ & \text{shear modul} \end{array}$$

fault plane normal

Full space Green function

Radiation pattern of Double Couple Source

Far field simplifications

$$u_{i}(\mathbf{x},t) = M_{jk} S(t) * \frac{\partial}{\partial \xi_{k}} G_{i}^{j}(\vec{x},t;\vec{\xi})|_{\vec{\xi}_{0}}$$

source time function

with $M_{ik}(t) = M_{ik} S(t)$

Far field representation

$$u_i(\mathbf{x},t) \approx M_{jk} S(t) * \dot{G}_i^j(\mathbf{x},t) \frac{\partial t'}{\partial \xi_k} = M_{jk} \dot{S}(t) * G_i^j(\mathbf{x},t) \frac{\partial t'}{\partial \xi_k}$$

Idealized moment tensor (MT) inversion: Note!

Fact 1:

The spatial point source MT-inversion is unique

Fact 2:

The spatially extended source problem is nonunique

<u>but:</u>

The non-uniqueness can be solved if time-dependency of rupture is known/given (e.g. Bleistein and Cohen (1977). J. Math. Phys. 2, 5-26).

Memo plate (theory section)

- Green functions represent wave and displacement response to point loading of the Earth
- Moment tensor defined as generalized force couples
- Moment tensor representation can be given for:
 - point sources or extended sources
 - near field (may be time-independent) and/or far field

Earthquake rupture: phenomenology

physical description of rupture

- rupture front (velocity and shape)
- rise time and slip function (temporal)
- healing front (velocity and shape)
- slip direction and slip pattern (spatial)
- rupture mode

rupture modes

1. "slip" of shear cracks without friction (3D simulations)

shear stress drop is imposed !

Crack solutions of strike slip fault, full space

Crack solutions of strike slip fault, half space

Note: earthquake slip may vary at barriers and asperities

Barriers: patches of high strength (compare inclusion).

Asperities: patches of high stess. Larger shear stress before the earthquake. Points, where new rupture may nucleate (compare capillare)

2. slip models considering friction

Kostrov (1966)

Self-healing slipping model, Heaton (1990)

Slip pulse model: slip rate and slip as a function of position x

slip increases linearly from nucleation point to healing front !

Nielson and Madariaga (2003)

2D numerical models: Slip rate as a function of time and position

Nielson and Madariaga (2003)

3D numerical modeling with weakening

Nielson and Madariaga (2003)

3. how large is rupture front velocity

"shaking and quaking experiment by Gerhard Müller: tensile crack rupture in gelatine

rupture front modulation: sketch

harmonic oscillation (source)

Lab experiments results

• rupture front accelerates quickly after nucleation

• terminal rupture velocity is close shear wave (mode I and III) or Rayleigh wave velocity

typical assumption: $v_r \approx h v_s$ with h = 0.5 - 0.9

rupture velocity accelerates at low stress region (capillary, low strength region)

rupture velocity slows down at rigid inclusion (e.g. crystalline CaF_2 , high strength region)

How to parameterize rupture front, healing front, and variable slip ?

" the Eikonal source model"

Lab experiments of tensile cracks: plumose lines are found orthogonal to rupture fronts

Desiccation cracks in starch: see Müller and Dahm, JGR, 2000

First order approach: ray - rupture front analogy

Müller and Dahm (2000)

- 1. steps and jumps cannot be represented by ray analogy
- 2. reflection of rupture fronts should not be considered

The "Eikonal source" : mathematical model

The "Eikonal source": numerical realisation

Isochorones of rupture front and of healing front from FD Eikonal solver

orientation of rupture plane (inverted)

Flexibility

- few parameter
- may consider background structural features
- may consider background wave velocity (and stress)
- flexibel
 - geometrical bounds
 - variable rupture and healing front velocity
 - variable nucelation point (asymmetric rupture)
 - (may consider variable slip)

Memo plate

- Slip may vary along rupture plane (but often assumed constant)
- Rupture velocity typically scales with shear wave velocity (but may also vary)
- Friction is important for shear cracks and can explain slip pulse ruptures
- The Eikonal source model is an empirical approach (approximation)
- Since space-time dependency of slip is constrained the Eikonal model reduces the nonuniquenes of the extended source inverse problem

Directivity effects and kinematic inversion

The directivity of surface waves (grey) explain why macroseismic intensity (contourlines) was higher towards north.

Important!!

Any depth estimate from macroseismic intensities should consider the directivity effects of radiated waves.

Haskell source

unilateral propagation of line source

rupture duration

Rupture duration and slip duration = trapezoidal displacement pulses

trapezoidal slip

SH Ground motion near the Epicenter of an earthquake at Parkfield. SH radiaiton is maximal, P-waves are nodal (Aki, 1968)

source spectra

The convolution of two boxcar function leads In frequency domain to a multiplication of two sinc-functions:

$$A(f) \sim M_0 \left| \frac{\sin \pi f T_r}{\pi f T_r} \right| \left| \frac{\sin \pi f T_d}{\pi f T_d} \right| \sim f^{-2}$$

Simulations by Sebastian Heimann

Synthetic P- and S-waves: uni- and bilateral rupture

circular rupture

Synthetic P- and S-waves

Distance Δ (deg)

Waveforms at 58 deg epicentral distance

Time (sec)

- 1: theoretical pulses
- 2: rupture in oppsoite direction
- 3: rupture on auxiliary plane
- 4: bi-drectional instead of one-directionsal
- 5: slip parallel to rupture instead of orthogonal

Brasilian deep focus earthquakes

Two events with different rupture

Surface wave unilateral rupture

Surface wave bi- and unilateral rupture

Since total fault length (100 km) and rupture velocity (3.5km/s) was the same, the duration and the directivity pattern differed

Synthetic shallow strike slip earthquake

Test of opposite rupture direction ?

