
SeisHub
SeisHub Workshop at the MESS 2013

Lion Krischer

Ludwig-Maximilians-University in Munich
Department of Earth and Environmental Sciences

Geophysics

Sudelfeld, March 14 2013



Rough Schedule

Morning I: Introduction to SeisHub

Morning II: Converting Data to XML

Afternoon: Extending SeisHub



Why a new Tool?

• Most seismic processing tools are mainly limited to classic
three-component recordings and cannot easily handle collocated
multi-component data (e.g., pressure, temperature, rotational
motions, tilt, accelerometer, GPS, GeoTIFF, 4D-Data, . . . )

• Very hard to extend and store other data



Why SeisHub?

• Can deal with continuous, event, and campaign based data
• Can be accessed from the outside via a web interface
• Multi-User
• Easy to extend
• Flexible - can be adapted on-the-fly without corruption → in stark
contrast to the classical SQL approach

• Scales to very large data sets
• Platform independent and open source
• Most basic client is the browser



SeisHub as a Server

• SeisHub can act a web server
• Multiple users can send requests to it

⇒ Collaborative working independent of location



Crash Course in Technologies Used by SeisHub



XML



XML
• Extensible Markup Language
• Well known example: XHTML
• An element is surrounded by an opening and a closing tag
• Elements can be arbitrarily nested
• Tags can be specialized with the help of attributes
• Human and machine readable

<?xml version="1.0" encoding="UTF-8" ?>
<seismic_event>

<magnitude type="Mw">7.0</magnitude>
<location>

<longitude>11.669197</longitude>
<latitude>48.261545</latitude>

</location>
</seismic_event>



XML

A large number of technologies are built on top of XML:
• XPath
• XML Schemata (XSD)
• Transformations (XSLT)
• XML Databases

⇒ Widely available support and tools

Examples from seismology:
• QuakeML
• StationXML
• XML-SEED



XPath
• A standardized way to access information inside an XML document
• Complex queries possible but usually not necessary

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<seismic_event>

<magnitude type="Mw">7.0</magnitude>
<location>

<longitude>11.669197</longitude>
<latitude>48.261545</latitude>

</location>
</seismic_event>

XPath expression to access the longitude:

/seismic_event/location/longitude



Databases



Relational Databases

• Store data in tables similar to Excel
• The tables have to be defined before data is entered
• Every table row has a fixed data type
• High performance
• One row is one tuple whose items are in relation to each other

Poets
Id FirstName Surname Age
1 Mongane Afrika 62
2 Stephen Serote 58
3 Tatumkhulu Watson 29



Relational Databases
• Data is distributed over several tables with the use of foreign keys
• Database Normalization

Poets
Id FirstName Surname Age
1 Mongane Afrika 62
2 Stephen Serote 58
3 Tatumkhulu Watson 29

Poems
Id Title Poet
1 Thrones of Darkness 2
2 Wakening Night 1
3 Once 3



SQL

• Structured Query Language
• Supported by most relational database systems

Example:

SELECT FirstName , Surname , Age
FROM Poets
WHERE Age <= 40
ORDER BY Surname



SQLite and PostgreSQL

SQLite PostgreSQL
File Based Server Based
“No” installation Complex installation
Slow Fast
Single User Multiple Users



XML Databases

• Enable the use of all XML related technologies

Two different types of XML databases:
• Native XML databases: Directly store XML documents - usually
very slow

• XML-enabled databases: Classical relational database with the
benefit of XML input and output



Web Technologies



Client-Server Model

• Clients send requests to the server
• Server answers with a response



HTTP

• Hypertext Transfer Protocol
• Used to transfer data in the internet
• Works by request and response, e.g. one party sends a request and
the other a response

• Contains headers
• Different request methods:

I GET: Request some data
I POST: Send data
I PUT: Send data, should always directly store data
I DELETE: Delete data
I . . .

⇒ RESTful service



SeisHub



What is SeisHub?

• Developed by Robert Barsch in the course of his PhD thesis
• Written in Python, backed by Twisted

• An XML database
• Not limited to XML data
• An easy way to access arbitrary Python functions from the web



SeisHub’s XML database
• Integrated way to handle arbitrary XML data

• Validation - assures integrity of your data (XSD)
• Transformation - makes it accessible by humans (XSLT)

• Indexes defined values and stores them in a relational database
• Query via SQL, XPath, or HTTP



SeisHub’s XML database

• Data is categorized by defining data types
• Upload, download, delete, and modify operations supported
• Integrated versioning - Keep track of the evolution of data

• Efficiently search over large datasets
• Extract user-defined values of interest

• Backed by PostgreSQL or SQLite
• Can also store non-XML data but this require more effort



Web Interface

• Complete administration of the XML database via a RESTful interface
• Map URLs to Python functions
• User Management and Access Control



Practical



Goal

• Use the event based data plugin developed yesterday
• Develop a SeisHub plug-in that enhances SeisHub with the possibility
of storing reported felt-seismicity records per event

Steps:

1. Convert the data to XML
2. Define the basic plug-in structure
3. Define a mapper producing a map from the stored results



Data

• The data is from the USGS for the L’Aquila earthquake
• Located at /home/mess/Desktop/seishub/data/cdi_zip_laquila.txt
• One line is one data point and should later correspond to one XML file

# Columns: ZIP/Location,CDI,No. of responses,Epicentral ...
"Abetone::Toscana::Italy",3.4,1,294,44.1300,10.6700,0, ...
"Acquafondata::Lazio::Italy",6.2,2,101,41.5500,13.9500, ...
"Acquaviva Picena::Marken::Italy",4.6,1,76,42.9300, ...
"Agnone::Molise::Italy",2.0,1,104,41.8000,14.3700,0, ...
...



Data Conversion

"Abetone::Toscana::Italy",3.4,1,294,44.1300,10.6700,0, ...

TO

<?xml version=’1.0’ encoding=’UTF-8’?>
<seismic_intensity>
<event>laquila</event>
<location>Abetone,Toscana,Italy</location>
<intensity>3.4</intensity>
<number_of_responses>1</number_of_responses>
<epicentral_distance>294</epicentral_distance>
<latitude>44.1300</latitude>
<longitude>10.6700</longitude>

</seismic_intensity>



Some Hints - Use the lxml element factory

from lxml import etree
from lxml.builder import E
doc = (E.root_tag(

E.element_1("Hello"),
E.element_2(E.sub_element("World"))))

string_doc = etree.tostring(doc, pretty_print=True,
xml_declaration=True, encoding="UTF-8")

print string_doc

<?xml version=’1.0’ encoding=’UTF-8’?>
<root_tag>
<element_1>Hello</element_1>
<element_2>
<sub_element>World</sub_element>

</element_2>
</root_tag>



Some Hints - Relations between event and report
• There needs to be some way to tell which event a felt seismicity is
associated with

• For the sake of simplicity this will be the resource name of the event
stored in SeisHub

• In a real world example this relation is better expressed as its own
resource

<?xml version=’1.0’ encoding=’UTF-8’?>
<seismic_intensity>
<event>laquila</event>
<location>Abetone,Toscana,Italy</location>
<intensity>3.4</intensity>
<number_of_responses>1</number_of_responses>
<epicentral_distance>294</epicentral_distance>
<latitude>44.1300</latitude>
<longitude>10.6700</longitude>

</seismic_intensity>



SeisHub Plug-in



SeisHub Plug-ins

• SeisHub alone does not do very much
• Functionality comes with plug-ins

Existing plug-ins:
• seishub.plugins.seismology: Continuous data streams at local data
center scale, events, and station metadata

• seishub.plugins.event_based_data: Event based waveforms and
synthetics

• seishub.plugins.exupery: Volcano fast response system - GPS,
InSAR, seismological, and other data



Plug-in Structure

seishub.plugins.mess/
seishub/

__init__.py
plugins/

__init__.py
mess/

__init__.py
mappers.py
package.py

setup.py



SeisHub Packages

• SeisHub organized data and functionality into so called packages
• A package can be interpreted as a folder

from seishub.core.core import Component, implements
from seishub.core.packages.interfaces import IPackage

class MESSPackage(Component):
implements(IPackage)
package_id = "mess"
version = "0.0.0."



SeisHub Resource Types

• Each XML resource uploaded to SeisHub has to belong to resource
type

from seishub.core.core import Component, implements
from seishub.core.packages.interfaces import IResourceType

class SeismicIntensityResourceType(Component):
implements(IResourceType)
package_id = "mess"
version = "0.0.0."
resourcetype_id = "seismic_intensity"



Registering Indices

• Searching for values in the raw XML files would require a full text
search in each XML file

• Not feasible once the database reaches a certain size
• Registering an index tells SeisHub which values to monitor
• These values will be stored in the relational database backend
• Fast queries possible



Registering Indices

registerIndex(INDEX_NAME, XPATH, INDEX_TYPE)

from seishub.core.packages.installer import registerIndex

class SeismicIntensityResourceType(Component):
...

registerIndex("event", "/seismic_intensity/event",
"text")

Available index types:
text, float, integer, datetime, date, timestamp, boolean, and numeric



Finishing the Plug-In

A preliminary version of the plugin is located at
/home/mess/Desktop/seishub/seishub.plugins.mess

1. Have a look at all files and try to figure out what each part does
2. The mess component and the seismic_intensity resource type are

already defined. Add indices for everything you deem necessary (at
least event, latitude, and longitude)

3. When you are done, save everything and launch the SeisHub instance
by executing
/home/mess/Desktop/seishub/SEISHUB_INSTANCE/bin/debug.sh

4. Visit http://localhost:8080/manage and activate all components
of the plug-in



Uploading the XML Files

• Now it is time to upload the previously generated XML files to the
SeisHub database.

• SeisHub implements a RESTful interface for all XML resources
• It can be accessed at the following URL:

ADDRESS:PORT/xml/COMPONENT/RESOURCE_TYPE/RESOURCE_NAME

The following HTTP methods are defined:

• GET: Get the specified resource. If no resource name is given, a list of all
available resources will be returned.

• POST: Upload a new resource. If no resource name is given, a random
one will be assigned.

• PUT: Upload a new resource/update an existing one.
• DELETE: Delete a resource.



Uploading the XML Files
Task: Upload all previously created XML files

Hints:
• Recommended way: The curl tool.

curl -v --data-binary @FILENAME -X POST "ADDRESS"

• -v: Verbose output
• --data-binary @FILENAME: Specify the file to send as the data
part of the request

• -X POST: Do a POST request

• Repeat for lots of files:

ls *.xml | xargs -I % curl -v --data-binary @% ...



Querying the Data I

Task: Request the uploaded data in different ways

Hints:
• Requesting data always uses GET
• Directly download a resource:

http://localhost:8080/xml/mess/seismic_intensity/name



Querying the Data II

Task: Request the uploaded data in different ways

Hints:
• Adding parameters to URLs

http://URL?arg1=a&arg2=b&arg3=c



Querying the Data III

Task: Request the uploaded data in different ways

• Get a list of all resources of a type:

http://localhost:8080/xml/mess/seismic_intensity

• limit=40 Return more results (Default: 20)
• offset=40 Return results starting from number 40
• number_of_responses=1 Return only those with one response
• min_intensity=8 Return only those with intensity 8 or larger
• max_intensity=8 Return only those with intensity 8 or smaller
• format=xhtml Return an xhtml table (Available formats: xml, xhtml, json)



Summary

• Just a view lines of code are enough to create a flexible, powerful and
extensible way of storing and retrieving large amounts of data

• Multiple persons can access and change the data simultaneously
• Web access makes it independent of location
• The indices can be changed at any time ⇒ Database adapts to a
problem

• May look complicated but is mostly just a matter of copy and paste
• Arbitrary functionality can be executed on top of the data with the
help of mappers (see next section)



Things Left Out in This Tutorial

Due to time constraints, the following parts are left out:

• Adding a XSD schema to the resource type
• Used for verification upon uploading

• Adding XSLT style sheets to the seismic intensity resource type
• Used for on-the-fly resource transformation



SeisHub Mappers



SeisHub Mappers

• SeisHub mappers are essentially Python functions executed when a
certain URL is accessed

• Always executed in a thread ⇒ SeisHub servers stays responsive
• Require more careful, defensive programming



SeisHub Mappers

http://localhost:8080/mess/getMap?event=laquila



SeisHub Mappers

http://localhost:8080/mess/getMap?event=laquila&type=contour



SeisHub Mappers

from seishub.core.core import Component, implements
from seishub.core.packages.interfaces import IMapper

class MapMapper(Component):
implements(IMapper)
package_id = "mess"
version = "0.0.0."
mapping_url = "/mess/getMap"

def process_GET(self, request):
event = request.args0.get("event", "laquila")
...
request.setHeader("content-type", "image/png")
return data

def process_POST(self, request):
...



Thanks for your Attention!

• http://seishub.org
• https://github.com/krischer/seishub.plugins.how_to_extend_seishub
• https://github.com/krischer/seishub.plugins.event_based_data
• https://github.com/barsch/seishub.plugins.seismology
• https://github.com/barsch/seishub.plugins.exupery


